一种改进的基于深度学习水果检测的苹果双目定位方法

IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY Information Processing in Agriculture Pub Date : 2023-06-01 DOI:10.1016/j.inpa.2021.12.003
Tengfei Li , Wentai Fang , Guanao Zhao , Fangfang Gao , Zhenchao Wu , Rui Li , Longsheng Fu , Jaspreet Dhupia
{"title":"一种改进的基于深度学习水果检测的苹果双目定位方法","authors":"Tengfei Li ,&nbsp;Wentai Fang ,&nbsp;Guanao Zhao ,&nbsp;Fangfang Gao ,&nbsp;Zhenchao Wu ,&nbsp;Rui Li ,&nbsp;Longsheng Fu ,&nbsp;Jaspreet Dhupia","doi":"10.1016/j.inpa.2021.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>Apple picking robot is now being developed as an alternative to hand picking due to a great demand for labor during apple harvest season. Accurate detection and localization of target fruit is necessary for robotic apple picking. Detection accuracy has a great influence on localization results. Although current researches on detection and localization of apples using traditional image algorithms can obtain good results under laboratory conditions, it is difficult to accurately detect and locate objects in natural field with complex environments. With the rapid development of artificial intelligence, accuracy of apple detection based on deep learning has been significantly improved. Therefore, a deep learning-based method was developed to accurately detect and locate the position of fruit. For different localization methods, binocular localization is a widely used localization method for its bionic principle and lower equipment cost. Hence, this paper proposed an improved binocular localization method for apple based on fruit detection using deep learning. First, apples of binocular images were detected by Faster R-CNN. After that, a segmentation based on chromatic aberration and chromatic aberration ratio was applied to segment apple and background pixels in bounding box of detected fruit. Furthermore, template matching with parallel polar line constraint was used to match apples in left and right images. Finally, two feature points on apples were selected to directly calculate three dimensional coordinates of feature points with the binocular localization principle. In this study, Faster R-CNN achieved an AP of 88.12% with an average detection speed of 0.32 s for an image. Meanwhile, standard deviation and localization precision of depth of two feature points on each apple were calculated to evaluate localization. Results showed that the average standard deviation and the average localization precision of 76 groups of datasets were 0.51 cm and 99.64%, respectively. Results indicated that the proposed improved binocular localization method is promising for fruit localization.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An improved binocular localization method for apple based on fruit detection using deep learning\",\"authors\":\"Tengfei Li ,&nbsp;Wentai Fang ,&nbsp;Guanao Zhao ,&nbsp;Fangfang Gao ,&nbsp;Zhenchao Wu ,&nbsp;Rui Li ,&nbsp;Longsheng Fu ,&nbsp;Jaspreet Dhupia\",\"doi\":\"10.1016/j.inpa.2021.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Apple picking robot is now being developed as an alternative to hand picking due to a great demand for labor during apple harvest season. Accurate detection and localization of target fruit is necessary for robotic apple picking. Detection accuracy has a great influence on localization results. Although current researches on detection and localization of apples using traditional image algorithms can obtain good results under laboratory conditions, it is difficult to accurately detect and locate objects in natural field with complex environments. With the rapid development of artificial intelligence, accuracy of apple detection based on deep learning has been significantly improved. Therefore, a deep learning-based method was developed to accurately detect and locate the position of fruit. For different localization methods, binocular localization is a widely used localization method for its bionic principle and lower equipment cost. Hence, this paper proposed an improved binocular localization method for apple based on fruit detection using deep learning. First, apples of binocular images were detected by Faster R-CNN. After that, a segmentation based on chromatic aberration and chromatic aberration ratio was applied to segment apple and background pixels in bounding box of detected fruit. Furthermore, template matching with parallel polar line constraint was used to match apples in left and right images. Finally, two feature points on apples were selected to directly calculate three dimensional coordinates of feature points with the binocular localization principle. In this study, Faster R-CNN achieved an AP of 88.12% with an average detection speed of 0.32 s for an image. Meanwhile, standard deviation and localization precision of depth of two feature points on each apple were calculated to evaluate localization. Results showed that the average standard deviation and the average localization precision of 76 groups of datasets were 0.51 cm and 99.64%, respectively. Results indicated that the proposed improved binocular localization method is promising for fruit localization.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317321000950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

摘要

苹果采摘机器人正在被开发,作为人工采摘的替代品,因为在苹果收获季节对劳动力的需求很大。对目标果实进行准确的检测和定位是实现机器人苹果采摘的必要条件。检测精度对定位结果影响很大。目前利用传统图像算法对苹果进行检测和定位的研究,虽然在实验室条件下可以获得较好的结果,但在环境复杂的自然场中,很难准确地检测和定位物体。随着人工智能的快速发展,基于深度学习的苹果检测精度得到了显著提高。因此,开发了一种基于深度学习的方法来准确地检测和定位水果的位置。在不同的定位方法中,双目定位以其仿生原理和较低的设备成本成为一种应用广泛的定位方法。为此,本文提出了一种改进的基于深度学习的苹果双目定位方法。首先,用Faster R-CNN检测双眼图像中的苹果。然后,采用基于色差和色差比的分割方法,在被检测水果的边界框中分割苹果和背景像素。在此基础上,采用平行极坐标约束的模板匹配方法对左右图像中的苹果进行匹配。最后,选取苹果上的两个特征点,利用双目定位原理直接计算特征点的三维坐标。在本研究中,Faster R-CNN对一张图像的平均检测速度为0.32 s, AP达到88.12%。同时计算每个苹果上两个特征点深度的标准差和定位精度,对定位进行评价。结果表明,76组数据集的平均标准差和平均定位精度分别为0.51 cm和99.64%。结果表明,改进的双目定位方法在水果定位中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved binocular localization method for apple based on fruit detection using deep learning

Apple picking robot is now being developed as an alternative to hand picking due to a great demand for labor during apple harvest season. Accurate detection and localization of target fruit is necessary for robotic apple picking. Detection accuracy has a great influence on localization results. Although current researches on detection and localization of apples using traditional image algorithms can obtain good results under laboratory conditions, it is difficult to accurately detect and locate objects in natural field with complex environments. With the rapid development of artificial intelligence, accuracy of apple detection based on deep learning has been significantly improved. Therefore, a deep learning-based method was developed to accurately detect and locate the position of fruit. For different localization methods, binocular localization is a widely used localization method for its bionic principle and lower equipment cost. Hence, this paper proposed an improved binocular localization method for apple based on fruit detection using deep learning. First, apples of binocular images were detected by Faster R-CNN. After that, a segmentation based on chromatic aberration and chromatic aberration ratio was applied to segment apple and background pixels in bounding box of detected fruit. Furthermore, template matching with parallel polar line constraint was used to match apples in left and right images. Finally, two feature points on apples were selected to directly calculate three dimensional coordinates of feature points with the binocular localization principle. In this study, Faster R-CNN achieved an AP of 88.12% with an average detection speed of 0.32 s for an image. Meanwhile, standard deviation and localization precision of depth of two feature points on each apple were calculated to evaluate localization. Results showed that the average standard deviation and the average localization precision of 76 groups of datasets were 0.51 cm and 99.64%, respectively. Results indicated that the proposed improved binocular localization method is promising for fruit localization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing in Agriculture
Information Processing in Agriculture Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
21.10
自引率
0.00%
发文量
80
期刊介绍: Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining
期刊最新文献
Editorial Board Disturbance rejection control method of agricultural quadrotor based on adaptive neural network Deep learning for rice leaf disease detection: A systematic literature review on emerging trends, methodologies and techniques A deep learning framework for prediction of crop yield in Australia under the impact of climate change Few-shot cow identification via meta-learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1