用固-液相(共存)法计算金属熔点的刚性程序

A. Arkundato, Wenny Maulina, L. Rohman, Ratna Dewi Syarifah, M. Ali Shafii
{"title":"用固-液相(共存)法计算金属熔点的刚性程序","authors":"A. Arkundato, Wenny Maulina, L. Rohman, Ratna Dewi Syarifah, M. Ali Shafii","doi":"10.25077/jif.14.2.132-140.2022","DOIUrl":null,"url":null,"abstract":"Melting point, particularly metal, is one of the important data for many applications. For developing new materials, adequate theories for melting point are very crucial. The determination of melting point using the popular phase-change curve method is very easy but usually overestimate. In current work, we determine the melting point of a pure metal (iron) using the method of solid-liquid phase coexistence. For this goal, molecular dynamics simulation was applied to obtain data of trajectories of atoms. Simulation (LAMMPS) and data analysis (OVITO) procedures are strictly applied to obtain the accurate melting point of iron based on the obtained trajectories data. For initial structure design of simulation, we used the ATOMSK program. The melting point of iron obtained using the phase change curve (PCC) method is about 2750 K < TPCC < 3250 K and using the coexistence phase (CP) method is TCP = 2325 K. A more accurate calculation needs to include defects factor in the simulated material and calculation. In this research we use the Morse potential to represent all of the atomic interaction among atoms of Fe material.","PeriodicalId":52720,"journal":{"name":"JIF Jurnal Ilmu Fisika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigid Procedure to Calculate the Melting Point of Metal Using the Solid-Liquid Phase (Coexistence) Method\",\"authors\":\"A. Arkundato, Wenny Maulina, L. Rohman, Ratna Dewi Syarifah, M. Ali Shafii\",\"doi\":\"10.25077/jif.14.2.132-140.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Melting point, particularly metal, is one of the important data for many applications. For developing new materials, adequate theories for melting point are very crucial. The determination of melting point using the popular phase-change curve method is very easy but usually overestimate. In current work, we determine the melting point of a pure metal (iron) using the method of solid-liquid phase coexistence. For this goal, molecular dynamics simulation was applied to obtain data of trajectories of atoms. Simulation (LAMMPS) and data analysis (OVITO) procedures are strictly applied to obtain the accurate melting point of iron based on the obtained trajectories data. For initial structure design of simulation, we used the ATOMSK program. The melting point of iron obtained using the phase change curve (PCC) method is about 2750 K < TPCC < 3250 K and using the coexistence phase (CP) method is TCP = 2325 K. A more accurate calculation needs to include defects factor in the simulated material and calculation. In this research we use the Morse potential to represent all of the atomic interaction among atoms of Fe material.\",\"PeriodicalId\":52720,\"journal\":{\"name\":\"JIF Jurnal Ilmu Fisika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIF Jurnal Ilmu Fisika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jif.14.2.132-140.2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIF Jurnal Ilmu Fisika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jif.14.2.132-140.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

熔点,特别是金属熔点,是许多应用的重要数据之一。对于开发新材料来说,充分的熔点理论是至关重要的。使用流行的相变曲线法测定熔点非常容易,但通常会高估。在目前的工作中,我们使用固液相共存的方法来确定纯金属(铁)的熔点。为此,应用分子动力学模拟获得了原子轨道的数据。根据所获得的轨迹数据,严格应用模拟(LAMMPS)和数据分析(OVITO)程序来获得准确的铁熔点。对于模拟的初始结构设计,我们使用ATOMSK程序。使用相变曲线(PCC)方法获得的铁的熔点约为2750K本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rigid Procedure to Calculate the Melting Point of Metal Using the Solid-Liquid Phase (Coexistence) Method
Melting point, particularly metal, is one of the important data for many applications. For developing new materials, adequate theories for melting point are very crucial. The determination of melting point using the popular phase-change curve method is very easy but usually overestimate. In current work, we determine the melting point of a pure metal (iron) using the method of solid-liquid phase coexistence. For this goal, molecular dynamics simulation was applied to obtain data of trajectories of atoms. Simulation (LAMMPS) and data analysis (OVITO) procedures are strictly applied to obtain the accurate melting point of iron based on the obtained trajectories data. For initial structure design of simulation, we used the ATOMSK program. The melting point of iron obtained using the phase change curve (PCC) method is about 2750 K < TPCC < 3250 K and using the coexistence phase (CP) method is TCP = 2325 K. A more accurate calculation needs to include defects factor in the simulated material and calculation. In this research we use the Morse potential to represent all of the atomic interaction among atoms of Fe material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JIF Jurnal Ilmu Fisika
自引率
0.00%
发文量
7
审稿时长
6 weeks
期刊最新文献
Development of River Flow and Water Quality Using IOT-based Smart Buoys Environment Monitoring System Particle Size Improvement and Layer Absorption of Metil Halida MAPbI3 Perovskite Doping Phenethylammonium Iodide (PEAI) Efficiency at Maximum Power of Endoreversible Quantum Otto Engine with Partial Thermalization in 3D Harmonic Potential Wind Gust Parameterization Assessment under Convective and Non-convective Events: A Case Study at the Kertajati International Airport An Analysis of the Schrodinger Equation Model for the Distribution Rate of Stock Returns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1