腺棘银纳米颗粒及其在钙酸不动杆菌和蜡样芽孢杆菌生物防治中的应用前景

Q3 Chemical Engineering Chemical Speciation and Bioavailability Pub Date : 2017-01-01 DOI:10.1080/09542299.2016.1252693
A. Abdelmoteleb, B. Valdez-Salas, C. Ceceña-Durán, O. Tzintzun-Camacho, F. Gutiérrez-Miceli, O. Grimaldo-Juárez, D. González-Mendoza
{"title":"腺棘银纳米颗粒及其在钙酸不动杆菌和蜡样芽孢杆菌生物防治中的应用前景","authors":"A. Abdelmoteleb, B. Valdez-Salas, C. Ceceña-Durán, O. Tzintzun-Camacho, F. Gutiérrez-Miceli, O. Grimaldo-Juárez, D. González-Mendoza","doi":"10.1080/09542299.2016.1252693","DOIUrl":null,"url":null,"abstract":"Abstract In the present study the characterization and properties of silver nanoparticles from Prosopis glandulosa leaf extract (AgNPs) were investigated using UV–Vis spectroscopic techniques, energy dispersive X-ray spectrometers (EDS), zeta potential and dynamic light scattering. The UV–Vis spectroscopic analysis showed the absorbance peaked at 487 nm, which indicated the synthesis of silver nanoparticles. The experimental results showed silver nanoparticles had Z-average diameter of 421 nm with higher stability (−200 mV). The EDS analysis also exhibited presentation of silver element. Additionally, the different concentrations of AgNPs (25, 50, 75 and 100 mg/mL) showed antibacterial activity against Acinetobacter calcoaceticus and Bacillus cereus. Finally, AgNPs from leaf extracts of P. glandulosa may be used as an agent of biocontrol of microorganism of importance medical. However, further studies will be needed to fully understand the antimicrobial activity of silver nanoparticles obtain from P. glandulosa.","PeriodicalId":55264,"journal":{"name":"Chemical Speciation and Bioavailability","volume":"29 1","pages":"1 - 5"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09542299.2016.1252693","citationCount":"21","resultStr":"{\"title\":\"Silver nanoparticles from Prosopis glandulosa and their potential application as biocontrol of Acinetobacter calcoaceticus and Bacillus cereus\",\"authors\":\"A. Abdelmoteleb, B. Valdez-Salas, C. Ceceña-Durán, O. Tzintzun-Camacho, F. Gutiérrez-Miceli, O. Grimaldo-Juárez, D. González-Mendoza\",\"doi\":\"10.1080/09542299.2016.1252693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present study the characterization and properties of silver nanoparticles from Prosopis glandulosa leaf extract (AgNPs) were investigated using UV–Vis spectroscopic techniques, energy dispersive X-ray spectrometers (EDS), zeta potential and dynamic light scattering. The UV–Vis spectroscopic analysis showed the absorbance peaked at 487 nm, which indicated the synthesis of silver nanoparticles. The experimental results showed silver nanoparticles had Z-average diameter of 421 nm with higher stability (−200 mV). The EDS analysis also exhibited presentation of silver element. Additionally, the different concentrations of AgNPs (25, 50, 75 and 100 mg/mL) showed antibacterial activity against Acinetobacter calcoaceticus and Bacillus cereus. Finally, AgNPs from leaf extracts of P. glandulosa may be used as an agent of biocontrol of microorganism of importance medical. However, further studies will be needed to fully understand the antimicrobial activity of silver nanoparticles obtain from P. glandulosa.\",\"PeriodicalId\":55264,\"journal\":{\"name\":\"Chemical Speciation and Bioavailability\",\"volume\":\"29 1\",\"pages\":\"1 - 5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09542299.2016.1252693\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Speciation and Bioavailability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09542299.2016.1252693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Speciation and Bioavailability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09542299.2016.1252693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 21

摘要

摘要采用紫外可见光谱技术、能谱仪、zeta电位和动态光散射技术研究了腺棘叶提取物(AgNPs)中银纳米粒子的表征和性质。紫外可见光谱分析表明,吸光度峰值在487 nm处,表明合成了纳米银。实验结果表明,银纳米粒子的z -平均直径为421 nm,具有较高的稳定性(−200 mV)。能谱分析也显示出银元素的存在。此外,不同浓度的AgNPs(25、50、75和100 mg/mL)对钙酸不动杆菌和蜡样芽孢杆菌均有抑菌活性。最后,从甘露叶提取物中提取的AgNPs可作为一种重要的医学微生物防制剂。然而,需要进一步的研究来充分了解从腺芽孢杆菌中获得的银纳米颗粒的抗菌活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silver nanoparticles from Prosopis glandulosa and their potential application as biocontrol of Acinetobacter calcoaceticus and Bacillus cereus
Abstract In the present study the characterization and properties of silver nanoparticles from Prosopis glandulosa leaf extract (AgNPs) were investigated using UV–Vis spectroscopic techniques, energy dispersive X-ray spectrometers (EDS), zeta potential and dynamic light scattering. The UV–Vis spectroscopic analysis showed the absorbance peaked at 487 nm, which indicated the synthesis of silver nanoparticles. The experimental results showed silver nanoparticles had Z-average diameter of 421 nm with higher stability (−200 mV). The EDS analysis also exhibited presentation of silver element. Additionally, the different concentrations of AgNPs (25, 50, 75 and 100 mg/mL) showed antibacterial activity against Acinetobacter calcoaceticus and Bacillus cereus. Finally, AgNPs from leaf extracts of P. glandulosa may be used as an agent of biocontrol of microorganism of importance medical. However, further studies will be needed to fully understand the antimicrobial activity of silver nanoparticles obtain from P. glandulosa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Chemical Speciation & Bioavailability ( CS&B) is a scholarly, peer-reviewed forum for insights on the chemical aspects of occurrence, distribution, transport, transformation, transfer, fate, and effects of substances in the environment and biota, and their impacts on the uptake of the substances by living organisms. Substances of interests include both beneficial and toxic ones, especially nutrients, heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants. It is the aim of this Journal to develop an international community of experienced colleagues to promote the research, discussion, review, and spread of information on chemical speciation and bioavailability, which is a topic of interest to researchers in many disciplines, including environmental, chemical, biological, food, medical, toxicology, and health sciences. Key themes in the scope of the Journal include, but are not limited to, the following “6Ms”: Methods for speciation analysis and the evaluation of bioavailability, especially the development, validation, and application of novel methods and techniques. Media that sustain the processes of release, distribution, transformation, and transfer of chemical speciation; of particular interest are emerging contaminants, such as engineered nanomaterials, pharmaceuticals, and personal-care products. Mobility of substance species in environment and biota, either spatially or temporally. Matters that influence the chemical speciation and bioavailability, mainly environmentally relevant conditions. Mechanisms that govern the transport, transformation, transfer, and fate of chemical speciation in the environment, and the biouptake of substances. Models for the simulation of chemical speciation and bioavailability, and for the prediction of toxicity. Chemical Speciation & Bioavailability is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read, anywhere, at any time. immediately on publication. There are no charges for submission to this journal.
期刊最新文献
Vertical distribution and release characteristics of phosphorus forms in the sediments from the river inflow area of Dianchi Lake, China Chemical speciation and complexation modeling of trace and rare earth elements in groundwater of Oban Massif and Mamfe mMbayment southeastern Nigeria Combined effects of straw-derived biochar and bio-based polymer-coated urea on nitrogen use efficiency and cotton yield Application of activated charcoal and nanocarbon to callus induction and plant regeneration in aromatic rice (Oryza sativa L.) Co-transport of Pb (II) and Cd (II) in saturated porous media: effects of colloids, flow rate and grain size
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1