丛枝菌根真菌通过调节葡萄的渗透平衡、抗氧化系统和干旱响应基因的表达来增强葡萄的抗旱能力。

IF 2.5 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY Australian Journal of Grape and Wine Research Pub Date : 2023-08-05 DOI:10.1155/2023/7208341
Q. Ye, Hua Wang, Hua Li
{"title":"丛枝菌根真菌通过调节葡萄的渗透平衡、抗氧化系统和干旱响应基因的表达来增强葡萄的抗旱能力。","authors":"Q. Ye, Hua Wang, Hua Li","doi":"10.1155/2023/7208341","DOIUrl":null,"url":null,"abstract":"Background and Aims. Drought harms the growth and productivity of grapevines; it thus poses a major threat to the development of viticulture in the background of ongoing climate change. Arbuscular mycorrhizal fungi (AMF) can be used to enhance the resistance/tolerance of plants to environmental stress. The effects of AMF on the osmotic regulation, antioxidant substances, and expression of drought-responsive genes in the grapevine Vitis vinifera L. cv. Ecolly were studied. Methods and Results. The experiment was conducted in a greenhouse in a completely randomized block design with four treatments: AMF colonization, well-watered; non-AMF colonization, well-watered; AMF colonization with drought stress; and non-AMF colonization with drought stress. The concentration of sucrose and proline in the leaves was higher in mycorrhizal grapevine than in nonmycorrhizal grapevine under drought stress. The concentration of malonaldehyde, hydrogen peroxide, superoxide anion, and glutathione and the activity of superoxide dismutase and peroxidase activity in leaves were higher in mycorrhizal grapevine than in nonmycorrhizal grapevine under drought conditions. AMF inoculation affected the expression of drought-responsive genes. Mycorrhization upregulated the expression of VvNCED, VvP5CS, VvSIP, VvPIP1;2, and VvTIP2;1 genes under drought stress. Conclusions. AMF could reduce the harm caused by drought stress by regulating osmosis, antioxidant activities, and the expression of key drought-responsive genes and aquaporin genes. Significance of the Study. This work provides insights into the physiological and biochemical activities influenced by AMF on grapevine under drought stress.","PeriodicalId":8582,"journal":{"name":"Australian Journal of Grape and Wine Research","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arbuscular Mycorrhizal Fungi Enhance Drought Stress Tolerance by Regulating Osmotic Balance, the Antioxidant System, and the Expression of Drought-Responsive Genes in Vitis vinifera L.\",\"authors\":\"Q. Ye, Hua Wang, Hua Li\",\"doi\":\"10.1155/2023/7208341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background and Aims. Drought harms the growth and productivity of grapevines; it thus poses a major threat to the development of viticulture in the background of ongoing climate change. Arbuscular mycorrhizal fungi (AMF) can be used to enhance the resistance/tolerance of plants to environmental stress. The effects of AMF on the osmotic regulation, antioxidant substances, and expression of drought-responsive genes in the grapevine Vitis vinifera L. cv. Ecolly were studied. Methods and Results. The experiment was conducted in a greenhouse in a completely randomized block design with four treatments: AMF colonization, well-watered; non-AMF colonization, well-watered; AMF colonization with drought stress; and non-AMF colonization with drought stress. The concentration of sucrose and proline in the leaves was higher in mycorrhizal grapevine than in nonmycorrhizal grapevine under drought stress. The concentration of malonaldehyde, hydrogen peroxide, superoxide anion, and glutathione and the activity of superoxide dismutase and peroxidase activity in leaves were higher in mycorrhizal grapevine than in nonmycorrhizal grapevine under drought conditions. AMF inoculation affected the expression of drought-responsive genes. Mycorrhization upregulated the expression of VvNCED, VvP5CS, VvSIP, VvPIP1;2, and VvTIP2;1 genes under drought stress. Conclusions. AMF could reduce the harm caused by drought stress by regulating osmosis, antioxidant activities, and the expression of key drought-responsive genes and aquaporin genes. Significance of the Study. This work provides insights into the physiological and biochemical activities influenced by AMF on grapevine under drought stress.\",\"PeriodicalId\":8582,\"journal\":{\"name\":\"Australian Journal of Grape and Wine Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Grape and Wine Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7208341\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Grape and Wine Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1155/2023/7208341","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的。干旱损害葡萄藤的生长和产量;因此,在持续的气候变化背景下,它对葡萄栽培的发展构成了重大威胁。丛枝菌根真菌(AMF)可用于提高植物对环境胁迫的抗性/耐受性。AMF对葡萄(Vitis vinifera L. cv.)渗透调控、抗氧化物质和干旱响应基因表达的影响。我们研究了它们。方法与结果。试验在温室内进行,采用完全随机区组设计,设4个处理:AMF定植、充分浇水;非amf殖民化,水充足;干旱胁迫下AMF定殖;干旱胁迫下的非amf定殖。干旱胁迫下,菌根葡萄叶片中蔗糖和脯氨酸的浓度高于非菌根葡萄。干旱条件下,菌根葡萄叶片丙二醛、过氧化氢、超氧阴离子和谷胱甘肽浓度以及叶片超氧化物歧化酶和过氧化物酶活性均高于非菌根葡萄。接种AMF影响干旱响应基因的表达。干旱胁迫下,菌根化上调了VvNCED、VvP5CS、VvSIP、VvPIP1;2和VvTIP2;1基因的表达。结论。AMF可以通过调节渗透、抗氧化活性以及关键干旱响应基因和水通道蛋白基因的表达来减轻干旱胁迫的危害。研究的意义。本研究揭示了干旱胁迫下AMF对葡萄生理生化活性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arbuscular Mycorrhizal Fungi Enhance Drought Stress Tolerance by Regulating Osmotic Balance, the Antioxidant System, and the Expression of Drought-Responsive Genes in Vitis vinifera L.
Background and Aims. Drought harms the growth and productivity of grapevines; it thus poses a major threat to the development of viticulture in the background of ongoing climate change. Arbuscular mycorrhizal fungi (AMF) can be used to enhance the resistance/tolerance of plants to environmental stress. The effects of AMF on the osmotic regulation, antioxidant substances, and expression of drought-responsive genes in the grapevine Vitis vinifera L. cv. Ecolly were studied. Methods and Results. The experiment was conducted in a greenhouse in a completely randomized block design with four treatments: AMF colonization, well-watered; non-AMF colonization, well-watered; AMF colonization with drought stress; and non-AMF colonization with drought stress. The concentration of sucrose and proline in the leaves was higher in mycorrhizal grapevine than in nonmycorrhizal grapevine under drought stress. The concentration of malonaldehyde, hydrogen peroxide, superoxide anion, and glutathione and the activity of superoxide dismutase and peroxidase activity in leaves were higher in mycorrhizal grapevine than in nonmycorrhizal grapevine under drought conditions. AMF inoculation affected the expression of drought-responsive genes. Mycorrhization upregulated the expression of VvNCED, VvP5CS, VvSIP, VvPIP1;2, and VvTIP2;1 genes under drought stress. Conclusions. AMF could reduce the harm caused by drought stress by regulating osmosis, antioxidant activities, and the expression of key drought-responsive genes and aquaporin genes. Significance of the Study. This work provides insights into the physiological and biochemical activities influenced by AMF on grapevine under drought stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
7.10%
发文量
35
审稿时长
3 months
期刊介绍: The Australian Journal of Grape and Wine Research provides a forum for the exchange of information about new and significant research in viticulture, oenology and related fields, and aims to promote these disciplines throughout the world. The Journal publishes results from original research in all areas of viticulture and oenology. This includes issues relating to wine, table and drying grape production; grapevine and rootstock biology, genetics, diseases and improvement; viticultural practices; juice and wine production technologies; vine and wine microbiology; quality effects of processing, packaging and inputs; wine chemistry; sensory science and consumer preferences; and environmental impacts of grape and wine production. Research related to other fermented or distilled beverages may also be considered. In addition to full-length research papers and review articles, short research or technical papers presenting new and highly topical information derived from a complete study (i.e. not preliminary data) may also be published. Special features and supplementary issues comprising the proceedings of workshops and conferences will appear periodically.
期刊最新文献
The Wine Quality of Merlot Relies in Irrigation Supplementation and Spotlights Sustainable Production Constraints in Mediterranean-Type Ecosystems Respectful Pruning Improves Grapevine Development: A Case Study in Young Vineyards Ability of Different Flavonols and Commercial Mannoproteins to Enhance Wine Colour through Copigmentation The Influences of Rootstock on the Performance of Pinot Noir (Vitis vinifera L.): Berry and Wine Composition A Comparative Study on the Modification of Polyphenolic, Volatile, and Sensory Profiles of Merlot Wine by Indigenous Lactiplantibacillus plantarum and Oenococcus oeni
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1