Jie Liu, Shenglong Shang, Zhiming Jiang, Rui Zhang, Shuying Sui, P. Zhu
{"title":"提高机械性能的化学改性海藻酸钠纤维的简易制备","authors":"Jie Liu, Shenglong Shang, Zhiming Jiang, Rui Zhang, Shuying Sui, P. Zhu","doi":"10.1177/23305517211060795","DOIUrl":null,"url":null,"abstract":"Sodium alginate fibers have been extensively studied due to being non-toxic and have high moisture retention, high oxygen permeability, biocompatibility, and biodegradability. However, their application has been limited due to their poor mechanical performance. In this study, poly(ethylene glycol) diglycidyl ether-modified sodium alginate fibers were prepared by spinning the solution after mixed reactions through a spinneret into a coagulation bath containing aqueous CaCl2. The properties of the spinning solution, the structure and physical properties of the modified sodium alginate fibers with various poly(ethylene glycol) diglycidyl ether contents were investigated. A poly(ethylene glycol) diglycidyl ether content of the modified sodium alginate fibers of 15 wt% gave optimal breaking strength and elongation at break, improving them by 78 % and 114 %, respectively, compared with pure sodium alginate fibers. The thermal stability of the modified sodium alginate fibers was also improved.","PeriodicalId":6955,"journal":{"name":"AATCC Journal of Research","volume":"9 1","pages":"35 - 42"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Facile Fabrication of Chemically Modified Sodium Alginate Fibers With Enhanced Mechanical Performance\",\"authors\":\"Jie Liu, Shenglong Shang, Zhiming Jiang, Rui Zhang, Shuying Sui, P. Zhu\",\"doi\":\"10.1177/23305517211060795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sodium alginate fibers have been extensively studied due to being non-toxic and have high moisture retention, high oxygen permeability, biocompatibility, and biodegradability. However, their application has been limited due to their poor mechanical performance. In this study, poly(ethylene glycol) diglycidyl ether-modified sodium alginate fibers were prepared by spinning the solution after mixed reactions through a spinneret into a coagulation bath containing aqueous CaCl2. The properties of the spinning solution, the structure and physical properties of the modified sodium alginate fibers with various poly(ethylene glycol) diglycidyl ether contents were investigated. A poly(ethylene glycol) diglycidyl ether content of the modified sodium alginate fibers of 15 wt% gave optimal breaking strength and elongation at break, improving them by 78 % and 114 %, respectively, compared with pure sodium alginate fibers. The thermal stability of the modified sodium alginate fibers was also improved.\",\"PeriodicalId\":6955,\"journal\":{\"name\":\"AATCC Journal of Research\",\"volume\":\"9 1\",\"pages\":\"35 - 42\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AATCC Journal of Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/23305517211060795\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AATCC Journal of Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/23305517211060795","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Facile Fabrication of Chemically Modified Sodium Alginate Fibers With Enhanced Mechanical Performance
Sodium alginate fibers have been extensively studied due to being non-toxic and have high moisture retention, high oxygen permeability, biocompatibility, and biodegradability. However, their application has been limited due to their poor mechanical performance. In this study, poly(ethylene glycol) diglycidyl ether-modified sodium alginate fibers were prepared by spinning the solution after mixed reactions through a spinneret into a coagulation bath containing aqueous CaCl2. The properties of the spinning solution, the structure and physical properties of the modified sodium alginate fibers with various poly(ethylene glycol) diglycidyl ether contents were investigated. A poly(ethylene glycol) diglycidyl ether content of the modified sodium alginate fibers of 15 wt% gave optimal breaking strength and elongation at break, improving them by 78 % and 114 %, respectively, compared with pure sodium alginate fibers. The thermal stability of the modified sodium alginate fibers was also improved.
期刊介绍:
AATCC Journal of Research. This textile research journal has a broad scope: from advanced materials, fibers, and textile and polymer chemistry, to color science, apparel design, and sustainability.
Now indexed by Science Citation Index Extended (SCIE) and discoverable in the Clarivate Analytics Web of Science Core Collection! The Journal’s impact factor is available in Journal Citation Reports.