阿萨巴斯卡河流域参与式水管理模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2020-04-02 DOI:10.1080/07011784.2019.1702103
D. Marcotte, R. MacDonald, M. Nemeth
{"title":"阿萨巴斯卡河流域参与式水管理模型","authors":"D. Marcotte, R. MacDonald, M. Nemeth","doi":"10.1080/07011784.2019.1702103","DOIUrl":null,"url":null,"abstract":"Abstract Water is often used for a variety of conflicting purposes. Furthermore, as water is a dynamic resource, its equitable allocation across boundaries often poses problems for involved stakeholders. Integrated water resource management (IWRM) aims to promote the coordinated management of water across all boundaries. In theory IWRM is an effective solution to address multiple conflicting uses: however, in practice it is difficult to implement. This paper presents a case-study of an IWRM initiative in which the key component of participatory modelling is played out. Other important processes are integrated as well, such as problem structuring, social learning, and stakeholder engagement. In 2016-2017, approximately 30 stakeholders representing industry, municipalities, environmental NGOs, and federal/provincial government collaborated in order to explore opportunities to achieve sustainable watershed management in the Athabasca River Basin, Alberta Canada. Stress scenarios (including potential changes in climate, land use, and water use) were developed and used to test a series of water management strategies throughout the basin. These strategies were simulated within an integrated modelling tool in a live setting. Through this interactive process, promising strategies for sustainable water management were explored, and a series of recommendations for policy makers were identified. Recommendations include, but are not limited to, identifying areas for land conservation and reclamation priority, establishing in-stream flow need targets, and reducing water navigation limitations in the lower basin. Outlined through this paper, this case-study shows that examples of real-world participatory modelling efforts are in fact possible.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07011784.2019.1702103","citationCount":"2","resultStr":"{\"title\":\"Participatory water management modelling in the Athabasca River Basin\",\"authors\":\"D. Marcotte, R. MacDonald, M. Nemeth\",\"doi\":\"10.1080/07011784.2019.1702103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Water is often used for a variety of conflicting purposes. Furthermore, as water is a dynamic resource, its equitable allocation across boundaries often poses problems for involved stakeholders. Integrated water resource management (IWRM) aims to promote the coordinated management of water across all boundaries. In theory IWRM is an effective solution to address multiple conflicting uses: however, in practice it is difficult to implement. This paper presents a case-study of an IWRM initiative in which the key component of participatory modelling is played out. Other important processes are integrated as well, such as problem structuring, social learning, and stakeholder engagement. In 2016-2017, approximately 30 stakeholders representing industry, municipalities, environmental NGOs, and federal/provincial government collaborated in order to explore opportunities to achieve sustainable watershed management in the Athabasca River Basin, Alberta Canada. Stress scenarios (including potential changes in climate, land use, and water use) were developed and used to test a series of water management strategies throughout the basin. These strategies were simulated within an integrated modelling tool in a live setting. Through this interactive process, promising strategies for sustainable water management were explored, and a series of recommendations for policy makers were identified. Recommendations include, but are not limited to, identifying areas for land conservation and reclamation priority, establishing in-stream flow need targets, and reducing water navigation limitations in the lower basin. Outlined through this paper, this case-study shows that examples of real-world participatory modelling efforts are in fact possible.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07011784.2019.1702103\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/07011784.2019.1702103\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/07011784.2019.1702103","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

水经常被用于各种相互冲突的目的。此外,由于水是一种动态资源,它的跨界公平分配往往给相关利益相关者带来问题。水资源综合管理(IWRM)旨在促进水资源的跨界协调管理。从理论上讲,综合水资源管理是解决多种相互冲突用途的有效办法,但在实践中难以实施。本文提出了一个综合水资源管理倡议的案例研究,其中参与式建模的关键组成部分发挥了作用。其他重要的过程也被集成,例如问题结构、社会学习和涉众参与。2016-2017年,代表行业、市政当局、环保非政府组织和联邦/省政府的约30个利益相关者合作,探索在加拿大阿尔伯塔省阿萨巴斯卡河流域实现可持续流域管理的机会。开发了压力情景(包括气候、土地利用和水资源利用的潜在变化),并用于测试整个流域的一系列水资源管理策略。这些策略在一个集成的建模工具中进行了模拟。通过这一互动过程,探讨了有希望的可持续水管理战略,并为决策者确定了一系列建议。建议包括,但不限于,确定土地保护和复垦的优先区域,建立流内流量需求目标,减少下游流域的通水限制。通过本文概述,这个案例研究表明,现实世界参与式建模工作的例子实际上是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Participatory water management modelling in the Athabasca River Basin
Abstract Water is often used for a variety of conflicting purposes. Furthermore, as water is a dynamic resource, its equitable allocation across boundaries often poses problems for involved stakeholders. Integrated water resource management (IWRM) aims to promote the coordinated management of water across all boundaries. In theory IWRM is an effective solution to address multiple conflicting uses: however, in practice it is difficult to implement. This paper presents a case-study of an IWRM initiative in which the key component of participatory modelling is played out. Other important processes are integrated as well, such as problem structuring, social learning, and stakeholder engagement. In 2016-2017, approximately 30 stakeholders representing industry, municipalities, environmental NGOs, and federal/provincial government collaborated in order to explore opportunities to achieve sustainable watershed management in the Athabasca River Basin, Alberta Canada. Stress scenarios (including potential changes in climate, land use, and water use) were developed and used to test a series of water management strategies throughout the basin. These strategies were simulated within an integrated modelling tool in a live setting. Through this interactive process, promising strategies for sustainable water management were explored, and a series of recommendations for policy makers were identified. Recommendations include, but are not limited to, identifying areas for land conservation and reclamation priority, establishing in-stream flow need targets, and reducing water navigation limitations in the lower basin. Outlined through this paper, this case-study shows that examples of real-world participatory modelling efforts are in fact possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1