{"title":"阿萨巴斯卡河流域参与式水管理模型","authors":"D. Marcotte, R. MacDonald, M. Nemeth","doi":"10.1080/07011784.2019.1702103","DOIUrl":null,"url":null,"abstract":"Abstract Water is often used for a variety of conflicting purposes. Furthermore, as water is a dynamic resource, its equitable allocation across boundaries often poses problems for involved stakeholders. Integrated water resource management (IWRM) aims to promote the coordinated management of water across all boundaries. In theory IWRM is an effective solution to address multiple conflicting uses: however, in practice it is difficult to implement. This paper presents a case-study of an IWRM initiative in which the key component of participatory modelling is played out. Other important processes are integrated as well, such as problem structuring, social learning, and stakeholder engagement. In 2016-2017, approximately 30 stakeholders representing industry, municipalities, environmental NGOs, and federal/provincial government collaborated in order to explore opportunities to achieve sustainable watershed management in the Athabasca River Basin, Alberta Canada. Stress scenarios (including potential changes in climate, land use, and water use) were developed and used to test a series of water management strategies throughout the basin. These strategies were simulated within an integrated modelling tool in a live setting. Through this interactive process, promising strategies for sustainable water management were explored, and a series of recommendations for policy makers were identified. Recommendations include, but are not limited to, identifying areas for land conservation and reclamation priority, establishing in-stream flow need targets, and reducing water navigation limitations in the lower basin. Outlined through this paper, this case-study shows that examples of real-world participatory modelling efforts are in fact possible.","PeriodicalId":55278,"journal":{"name":"Canadian Water Resources Journal","volume":"45 1","pages":"109 - 124"},"PeriodicalIF":1.7000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07011784.2019.1702103","citationCount":"2","resultStr":"{\"title\":\"Participatory water management modelling in the Athabasca River Basin\",\"authors\":\"D. Marcotte, R. MacDonald, M. Nemeth\",\"doi\":\"10.1080/07011784.2019.1702103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Water is often used for a variety of conflicting purposes. Furthermore, as water is a dynamic resource, its equitable allocation across boundaries often poses problems for involved stakeholders. Integrated water resource management (IWRM) aims to promote the coordinated management of water across all boundaries. In theory IWRM is an effective solution to address multiple conflicting uses: however, in practice it is difficult to implement. This paper presents a case-study of an IWRM initiative in which the key component of participatory modelling is played out. Other important processes are integrated as well, such as problem structuring, social learning, and stakeholder engagement. In 2016-2017, approximately 30 stakeholders representing industry, municipalities, environmental NGOs, and federal/provincial government collaborated in order to explore opportunities to achieve sustainable watershed management in the Athabasca River Basin, Alberta Canada. Stress scenarios (including potential changes in climate, land use, and water use) were developed and used to test a series of water management strategies throughout the basin. These strategies were simulated within an integrated modelling tool in a live setting. Through this interactive process, promising strategies for sustainable water management were explored, and a series of recommendations for policy makers were identified. Recommendations include, but are not limited to, identifying areas for land conservation and reclamation priority, establishing in-stream flow need targets, and reducing water navigation limitations in the lower basin. Outlined through this paper, this case-study shows that examples of real-world participatory modelling efforts are in fact possible.\",\"PeriodicalId\":55278,\"journal\":{\"name\":\"Canadian Water Resources Journal\",\"volume\":\"45 1\",\"pages\":\"109 - 124\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07011784.2019.1702103\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Water Resources Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/07011784.2019.1702103\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Water Resources Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/07011784.2019.1702103","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Participatory water management modelling in the Athabasca River Basin
Abstract Water is often used for a variety of conflicting purposes. Furthermore, as water is a dynamic resource, its equitable allocation across boundaries often poses problems for involved stakeholders. Integrated water resource management (IWRM) aims to promote the coordinated management of water across all boundaries. In theory IWRM is an effective solution to address multiple conflicting uses: however, in practice it is difficult to implement. This paper presents a case-study of an IWRM initiative in which the key component of participatory modelling is played out. Other important processes are integrated as well, such as problem structuring, social learning, and stakeholder engagement. In 2016-2017, approximately 30 stakeholders representing industry, municipalities, environmental NGOs, and federal/provincial government collaborated in order to explore opportunities to achieve sustainable watershed management in the Athabasca River Basin, Alberta Canada. Stress scenarios (including potential changes in climate, land use, and water use) were developed and used to test a series of water management strategies throughout the basin. These strategies were simulated within an integrated modelling tool in a live setting. Through this interactive process, promising strategies for sustainable water management were explored, and a series of recommendations for policy makers were identified. Recommendations include, but are not limited to, identifying areas for land conservation and reclamation priority, establishing in-stream flow need targets, and reducing water navigation limitations in the lower basin. Outlined through this paper, this case-study shows that examples of real-world participatory modelling efforts are in fact possible.
期刊介绍:
The Canadian Water Resources Journal accepts manuscripts in English or French and publishes abstracts in both official languages. Preference is given to manuscripts focusing on science and policy aspects of Canadian water management. Specifically, manuscripts should stimulate public awareness and understanding of Canada''s water resources, encourage recognition of the high priority of water as a resource, and provide new or increased knowledge on some aspect of Canada''s water.
The Canadian Water Resources Journal was first published in the fall of 1976 and it has grown in stature to be recognized as a quality and important publication in the water resources field.