{"title":"基于mems的铅酸电池比重在线测量","authors":"Yashwant Gulab Adhav, Dayaram Nimba Sonawane, Chetankumar Yashawant Patil","doi":"10.46604/aiti.2023.8964","DOIUrl":null,"url":null,"abstract":"Traditional methods for measuring the specific gravity (SG) of lead-acid batteries are offline, time-consuming, unsafe, and complicated. This study proposes an online method for the SG measurement to estimate the state-of-charge (SoC) of lead-acid batteries. This proposed method is based on an air purge system integrating with a micro electro mechanical system sensor. Through the proposed strategy, the SoC measurement achieves up to ±1% accuracy. The technique has an SG accuracy of ±0.002% which is better than the glass hydrometer accuracy of ±0.005% in the battery charge reading. The experimental results show that the high accuracy and precise measurements of SG and SoC can be conducted by using the proposed method.","PeriodicalId":52314,"journal":{"name":"Advances in Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online MEMS-Based Specific Gravity Measurement for Lead-Acid Batteries\",\"authors\":\"Yashwant Gulab Adhav, Dayaram Nimba Sonawane, Chetankumar Yashawant Patil\",\"doi\":\"10.46604/aiti.2023.8964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional methods for measuring the specific gravity (SG) of lead-acid batteries are offline, time-consuming, unsafe, and complicated. This study proposes an online method for the SG measurement to estimate the state-of-charge (SoC) of lead-acid batteries. This proposed method is based on an air purge system integrating with a micro electro mechanical system sensor. Through the proposed strategy, the SoC measurement achieves up to ±1% accuracy. The technique has an SG accuracy of ±0.002% which is better than the glass hydrometer accuracy of ±0.005% in the battery charge reading. The experimental results show that the high accuracy and precise measurements of SG and SoC can be conducted by using the proposed method.\",\"PeriodicalId\":52314,\"journal\":{\"name\":\"Advances in Technology Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/aiti.2023.8964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/aiti.2023.8964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Online MEMS-Based Specific Gravity Measurement for Lead-Acid Batteries
Traditional methods for measuring the specific gravity (SG) of lead-acid batteries are offline, time-consuming, unsafe, and complicated. This study proposes an online method for the SG measurement to estimate the state-of-charge (SoC) of lead-acid batteries. This proposed method is based on an air purge system integrating with a micro electro mechanical system sensor. Through the proposed strategy, the SoC measurement achieves up to ±1% accuracy. The technique has an SG accuracy of ±0.002% which is better than the glass hydrometer accuracy of ±0.005% in the battery charge reading. The experimental results show that the high accuracy and precise measurements of SG and SoC can be conducted by using the proposed method.