模型开放水域试验不确定度分析

IF 2 3区 工程技术 Q2 ENGINEERING, MARINE Polish Maritime Research Pub Date : 2022-12-01 DOI:10.2478/pomr-2022-0039
P. Król
{"title":"模型开放水域试验不确定度分析","authors":"P. Król","doi":"10.2478/pomr-2022-0039","DOIUrl":null,"url":null,"abstract":"Abstract Within the frame of CTO’s standard procedure, a propeller open-water test is preceded by a reference measurement, which is taken for a reference propeller model (P356). The results of these measurements are assembled to conduct an open-water test uncertainty analysis. Additional material was gathered from open-water tests that were conducted throughout several research projects on the CP469 model, which is a model of the Nawigator XXI propeller. The latter is a controllable pitch propeller; its pitch was reset before each test repetition. Known procedures for the determination of the open-water test uncertainty do not allow one to extract the manufacture impact directly, without building many models. This factor was addressed with the use of lifting surface calculations. Under certain additional assumptions, these calculations were performed for 100 generic versions of each propeller’s geometry, which were generated by random deviations from the theoretical data within the limits of allowed tolerances. The results of the conducted analyses made it possible to extract separate factors, which were connected to the test’s repeatability, measurement bias and geometry tolerance.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of Model-Scale Open-Water Test Uncertainty\",\"authors\":\"P. Król\",\"doi\":\"10.2478/pomr-2022-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Within the frame of CTO’s standard procedure, a propeller open-water test is preceded by a reference measurement, which is taken for a reference propeller model (P356). The results of these measurements are assembled to conduct an open-water test uncertainty analysis. Additional material was gathered from open-water tests that were conducted throughout several research projects on the CP469 model, which is a model of the Nawigator XXI propeller. The latter is a controllable pitch propeller; its pitch was reset before each test repetition. Known procedures for the determination of the open-water test uncertainty do not allow one to extract the manufacture impact directly, without building many models. This factor was addressed with the use of lifting surface calculations. Under certain additional assumptions, these calculations were performed for 100 generic versions of each propeller’s geometry, which were generated by random deviations from the theoretical data within the limits of allowed tolerances. The results of the conducted analyses made it possible to extract separate factors, which were connected to the test’s repeatability, measurement bias and geometry tolerance.\",\"PeriodicalId\":49681,\"journal\":{\"name\":\"Polish Maritime Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Maritime Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2022-0039\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2022-0039","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 1

摘要

在CTO标准程序的框架内,螺旋桨开放水域试验之前要进行参考测量,该参考测量是对参考螺旋桨模型(P356)进行的。将这些测量结果集合起来进行开放水域试验的不确定度分析。额外的材料是从几个研究项目中对CP469模型进行的开放水域测试中收集的,CP469模型是navigator XXI螺旋桨的一个模型。后者为可调螺距螺旋桨;它的音高在每次重复测试之前被重置。已知的确定开放水域试验不确定度的程序不允许在不建立许多模型的情况下直接提取制造影响。利用提升面计算解决了这一因素。在某些额外的假设下,这些计算是对每个螺旋桨几何形状的100个通用版本进行的,这些版本是在允许的公差范围内由理论数据的随机偏差产生的。所进行的分析结果使提取与测试的可重复性、测量偏差和几何公差相关的单独因素成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Model-Scale Open-Water Test Uncertainty
Abstract Within the frame of CTO’s standard procedure, a propeller open-water test is preceded by a reference measurement, which is taken for a reference propeller model (P356). The results of these measurements are assembled to conduct an open-water test uncertainty analysis. Additional material was gathered from open-water tests that were conducted throughout several research projects on the CP469 model, which is a model of the Nawigator XXI propeller. The latter is a controllable pitch propeller; its pitch was reset before each test repetition. Known procedures for the determination of the open-water test uncertainty do not allow one to extract the manufacture impact directly, without building many models. This factor was addressed with the use of lifting surface calculations. Under certain additional assumptions, these calculations were performed for 100 generic versions of each propeller’s geometry, which were generated by random deviations from the theoretical data within the limits of allowed tolerances. The results of the conducted analyses made it possible to extract separate factors, which were connected to the test’s repeatability, measurement bias and geometry tolerance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polish Maritime Research
Polish Maritime Research 工程技术-工程:海洋
CiteScore
3.70
自引率
45.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components. All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as: all types of vessels and their equipment, fixed and floating offshore units and their components, autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV). We welcome submissions from these fields in the following technical topics: ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc., structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc., marine equipment: ship and offshore unit power plants: overboarding equipment; etc.
期刊最新文献
Automatic Classification of Unexploded Ordnance (UXO) Based on Deep Learning Neural Networks (DLNNS) Hydrodynamic Loads on a Semi-Submersible Platform Supporting a Wind Turbine Under a Mooring System With Buoys Investigating Fuel Injection Strategies to Enhance Ship Energy Efficiency in Wave Conditions Practical Finite-Time Event-Triggered Control of Underactuated Surface Vessels in Presence of False Data Injection Attacks Effects on of Blended Biodiesel and Heavy Oil on Engine Combustion and Black Carbon Emissions of a Low-Speed Two-Stroke Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1