3D打印细胞明胶/丝素复合支架的FTY-720局部递送,增强血管化骨再生

Q1 Engineering Smart Materials in Medicine Pub Date : 2022-01-01 DOI:10.1016/j.smaim.2022.01.007
Jin Yang , Changxu Deng , Muhammad Shafiq , Zhihui Li , Qianqian Zhang , Haibo Du , Shikai Li , Xiaojun Zhou , Chuanglong He
{"title":"3D打印细胞明胶/丝素复合支架的FTY-720局部递送,增强血管化骨再生","authors":"Jin Yang ,&nbsp;Changxu Deng ,&nbsp;Muhammad Shafiq ,&nbsp;Zhihui Li ,&nbsp;Qianqian Zhang ,&nbsp;Haibo Du ,&nbsp;Shikai Li ,&nbsp;Xiaojun Zhou ,&nbsp;Chuanglong He","doi":"10.1016/j.smaim.2022.01.007","DOIUrl":null,"url":null,"abstract":"<div><p>Three-dimensional (3D) printing can construct products with accurate complex architecture. Engineered bone tissues that can promote vascularization and regulate directed differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) are considered as an ideal substitute the healing of bone for bone defects treatment. Herein, we fabricated a 3D printed BMSCs-laden scaffold using methacrylated gelatin and methacrylated silk fibroin (GelMA/SFMA) based bioinks along with localized sustained release of a small molecule drug fingolimod (FTY-720) for the synergistic interactions of vascularization and osteogenesis during bone repair. The GelMA/SFMA bioink showed significant advantages due to their tunable rheology, rapid thermal crosslinking, and improved shape fidelity following bioprinting. The <em>in vitro</em> experiments demonstrated that high cell viability of cells-laden constructs, while FTY-720-containing scaffolds significantly promoted migration and induced tube-like structure formation of human umbilical vein endothelial cells (HUVECs) as well as expressed high osteogenic-related genes expression of BMSCs. The implantation in a critical-size rat cranial defect model further revealed that FTY-720-loaded scaffolds significantly promoted vascularization and bone regeneration. Furthermore, scaffolds carrying BMSCs and FTY-720 were more osteogenic <em>in vivo</em> than scaffolds carrying BMSCs alone. Therefore, the constructed BMSCs-laden and FTY-720-loaded GelMA/SFMA scaffolds would be an ideal candidate with required structure and desired function for vascularization of bone regeneration.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183422000072/pdfft?md5=c732599182eabfbfc61cf0f0570f8b97&pid=1-s2.0-S2590183422000072-main.pdf","citationCount":"15","resultStr":"{\"title\":\"Localized delivery of FTY-720 from 3D printed cell-laden gelatin/silk fibroin composite scaffolds for enhanced vascularized bone regeneration\",\"authors\":\"Jin Yang ,&nbsp;Changxu Deng ,&nbsp;Muhammad Shafiq ,&nbsp;Zhihui Li ,&nbsp;Qianqian Zhang ,&nbsp;Haibo Du ,&nbsp;Shikai Li ,&nbsp;Xiaojun Zhou ,&nbsp;Chuanglong He\",\"doi\":\"10.1016/j.smaim.2022.01.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Three-dimensional (3D) printing can construct products with accurate complex architecture. Engineered bone tissues that can promote vascularization and regulate directed differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) are considered as an ideal substitute the healing of bone for bone defects treatment. Herein, we fabricated a 3D printed BMSCs-laden scaffold using methacrylated gelatin and methacrylated silk fibroin (GelMA/SFMA) based bioinks along with localized sustained release of a small molecule drug fingolimod (FTY-720) for the synergistic interactions of vascularization and osteogenesis during bone repair. The GelMA/SFMA bioink showed significant advantages due to their tunable rheology, rapid thermal crosslinking, and improved shape fidelity following bioprinting. The <em>in vitro</em> experiments demonstrated that high cell viability of cells-laden constructs, while FTY-720-containing scaffolds significantly promoted migration and induced tube-like structure formation of human umbilical vein endothelial cells (HUVECs) as well as expressed high osteogenic-related genes expression of BMSCs. The implantation in a critical-size rat cranial defect model further revealed that FTY-720-loaded scaffolds significantly promoted vascularization and bone regeneration. Furthermore, scaffolds carrying BMSCs and FTY-720 were more osteogenic <em>in vivo</em> than scaffolds carrying BMSCs alone. Therefore, the constructed BMSCs-laden and FTY-720-loaded GelMA/SFMA scaffolds would be an ideal candidate with required structure and desired function for vascularization of bone regeneration.</p></div>\",\"PeriodicalId\":22019,\"journal\":{\"name\":\"Smart Materials in Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590183422000072/pdfft?md5=c732599182eabfbfc61cf0f0570f8b97&pid=1-s2.0-S2590183422000072-main.pdf\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590183422000072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183422000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 15

摘要

三维(3D)打印可以构建具有精确复杂结构的产品。工程骨组织能够促进血管化和调节骨髓间充质干细胞(BMSCs)的定向分化,被认为是骨愈合治疗骨缺损的理想替代品。在此,我们使用甲基丙烯酸明胶和甲基丙烯酸丝素(GelMA/SFMA)为基础的生物墨水,以及小分子药物fingolimod (FTY-720)的局部持续释放,制造了一个3D打印的bmscs负载支架,用于骨修复过程中血管化和成骨的协同相互作用。GelMA/SFMA生物链接具有显著的优势,因为它们具有可调的流变性、快速的热交联和生物打印后提高的形状保真度。体外实验表明,载细胞构建体具有较高的细胞活力,而含fty -720的支架可显著促进人脐静脉内皮细胞(HUVECs)的迁移和诱导管状结构的形成,并表达BMSCs的高成骨相关基因表达。在临界尺寸大鼠颅骨缺损模型中植入fty -720进一步表明,负载fty -720支架可显著促进血管形成和骨再生。此外,携带BMSCs和FTY-720的支架在体内比单独携带BMSCs的支架具有更强的成骨性。因此,构建的bmscs负载和fty -720负载的GelMA/SFMA支架将是具有骨再生血管化所需结构和功能的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Localized delivery of FTY-720 from 3D printed cell-laden gelatin/silk fibroin composite scaffolds for enhanced vascularized bone regeneration

Three-dimensional (3D) printing can construct products with accurate complex architecture. Engineered bone tissues that can promote vascularization and regulate directed differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) are considered as an ideal substitute the healing of bone for bone defects treatment. Herein, we fabricated a 3D printed BMSCs-laden scaffold using methacrylated gelatin and methacrylated silk fibroin (GelMA/SFMA) based bioinks along with localized sustained release of a small molecule drug fingolimod (FTY-720) for the synergistic interactions of vascularization and osteogenesis during bone repair. The GelMA/SFMA bioink showed significant advantages due to their tunable rheology, rapid thermal crosslinking, and improved shape fidelity following bioprinting. The in vitro experiments demonstrated that high cell viability of cells-laden constructs, while FTY-720-containing scaffolds significantly promoted migration and induced tube-like structure formation of human umbilical vein endothelial cells (HUVECs) as well as expressed high osteogenic-related genes expression of BMSCs. The implantation in a critical-size rat cranial defect model further revealed that FTY-720-loaded scaffolds significantly promoted vascularization and bone regeneration. Furthermore, scaffolds carrying BMSCs and FTY-720 were more osteogenic in vivo than scaffolds carrying BMSCs alone. Therefore, the constructed BMSCs-laden and FTY-720-loaded GelMA/SFMA scaffolds would be an ideal candidate with required structure and desired function for vascularization of bone regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
期刊最新文献
Externally triggered drug delivery systems Advances of surface modification to alleviate oxidative stress-induced valve degeneration The state-of-the-art therapeutic paradigms against sepsis Magnesium-based bioceramic-enhanced composites fabricated via friction stir processing Mitochondrial targeted prodrug nanoparticles for chemo-photodynamic combinational tumour therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1