基于机器学习的供水水库有害藻华预测

IF 2.4 4区 环境科学与生态学 Q2 WATER RESOURCES Water Quality Research Journal Pub Date : 2022-10-19 DOI:10.2166/wqrj.2022.019
Bongseok Jeong, Maria Renee Chapeta, Mingu Kim, Jinho Kim, Jihoon Shin, YoonKyung Cha
{"title":"基于机器学习的供水水库有害藻华预测","authors":"Bongseok Jeong, Maria Renee Chapeta, Mingu Kim, Jinho Kim, Jihoon Shin, YoonKyung Cha","doi":"10.2166/wqrj.2022.019","DOIUrl":null,"url":null,"abstract":"\n Harmful algal blooms (HABs) pose a potential risk to human and ecosystem health. HAB occurrences are influenced by numerous environmental factors; thus, accurate predictions of HABs and explanations about the predictions are required to implement preventive water quality management. In this study, machine learning (ML) algorithms, i.e., random forest (RF) and extreme gradient boosting (XGB), were employed to predict HABs in eight water supply reservoirs in South Korea. The use of synthetic minority oversampling technique for addressing imbalanced HAB occurrences improved classification performance of the ML algorithms. Although RF and XGB resulted in marginal performance differences, XGB exhibited more stable performance in the presence of data imbalance. Furthermore, a post hoc explanation technique, Shapley additive explanation was employed to estimate relative feature importance. Among the input features, water temperature and concentrations of total nitrogen and total phosphorus appeared important in predicting HAB occurrences. The results suggest that the use of ML algorithms along with explanation methods increase the usefulness of predictive models as a decision-making tool for water quality management.","PeriodicalId":23720,"journal":{"name":"Water Quality Research Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Machine learning-based prediction of harmful algal blooms in water supply reservoirs\",\"authors\":\"Bongseok Jeong, Maria Renee Chapeta, Mingu Kim, Jinho Kim, Jihoon Shin, YoonKyung Cha\",\"doi\":\"10.2166/wqrj.2022.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Harmful algal blooms (HABs) pose a potential risk to human and ecosystem health. HAB occurrences are influenced by numerous environmental factors; thus, accurate predictions of HABs and explanations about the predictions are required to implement preventive water quality management. In this study, machine learning (ML) algorithms, i.e., random forest (RF) and extreme gradient boosting (XGB), were employed to predict HABs in eight water supply reservoirs in South Korea. The use of synthetic minority oversampling technique for addressing imbalanced HAB occurrences improved classification performance of the ML algorithms. Although RF and XGB resulted in marginal performance differences, XGB exhibited more stable performance in the presence of data imbalance. Furthermore, a post hoc explanation technique, Shapley additive explanation was employed to estimate relative feature importance. Among the input features, water temperature and concentrations of total nitrogen and total phosphorus appeared important in predicting HAB occurrences. The results suggest that the use of ML algorithms along with explanation methods increase the usefulness of predictive models as a decision-making tool for water quality management.\",\"PeriodicalId\":23720,\"journal\":{\"name\":\"Water Quality Research Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Quality Research Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wqrj.2022.019\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wqrj.2022.019","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 3

摘要

有害藻华(HABs)对人类健康和生态系统健康构成潜在威胁。有害藻华的发生受到许多环境因素的影响;因此,需要对有害藻华进行准确的预测并对预测结果进行解释,以实施预防性水质管理。在这项研究中,采用机器学习(ML)算法,即随机森林(RF)和极端梯度增强(XGB),来预测韩国8个供水水库的有害藻华。使用合成少数派过采样技术来处理不平衡HAB的发生,提高了ML算法的分类性能。尽管RF和XGB在性能上存在边际差异,但在数据不平衡的情况下,XGB表现出更稳定的性能。此外,采用事后解释技术Shapley加性解释估计相对特征重要性。在输入特征中,水温和总氮、总磷浓度对赤潮的发生具有重要的预测作用。结果表明,ML算法和解释方法的使用增加了预测模型作为水质管理决策工具的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning-based prediction of harmful algal blooms in water supply reservoirs
Harmful algal blooms (HABs) pose a potential risk to human and ecosystem health. HAB occurrences are influenced by numerous environmental factors; thus, accurate predictions of HABs and explanations about the predictions are required to implement preventive water quality management. In this study, machine learning (ML) algorithms, i.e., random forest (RF) and extreme gradient boosting (XGB), were employed to predict HABs in eight water supply reservoirs in South Korea. The use of synthetic minority oversampling technique for addressing imbalanced HAB occurrences improved classification performance of the ML algorithms. Although RF and XGB resulted in marginal performance differences, XGB exhibited more stable performance in the presence of data imbalance. Furthermore, a post hoc explanation technique, Shapley additive explanation was employed to estimate relative feature importance. Among the input features, water temperature and concentrations of total nitrogen and total phosphorus appeared important in predicting HAB occurrences. The results suggest that the use of ML algorithms along with explanation methods increase the usefulness of predictive models as a decision-making tool for water quality management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
8.70%
发文量
0
期刊最新文献
Development and evaluation of filter for canal water potability Phosphorus removal and recovery from anaerobic bioreactor effluent using a batch electrocoagulation process A Fuzzy Inference System for enhanced groundwater quality assessment and index determination The risk of bacterial virulence in the face of concentrated river pollution Efficient removal of perfluorinated compounds with the polyamide nanofiltration membrane and membrane fouling resistance analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1