{"title":"GSH对霞多丽葡萄酒模拟氧化代谢产物影响的广泛靶向代谢组学分析","authors":"Deyan Gao, Cong Wang, Hongmei Shi, Hongmin Liang","doi":"10.3390/fermentation9090815","DOIUrl":null,"url":null,"abstract":"The effects of reduced glutathione (GSH) on non-volatile and volatile metabolites of Chardonnay wine during storage under simulated oxidation were investigated. The metabolites of GSH, which play a key role in the storage of white wine, were identified. In this study, GSHs at 0, 10, and 20 mg/L were added to wine samples and stored at 45 °C for 45 days. Wine samples supplemented with 0 mg/L GSH were used as controls (CK). The samples stored for 45 days were analyzed via ultra-high performance liquid chromatography–tandem mass spectrometry and gas chromatography–tandem mass spectrometry. A total of 1107 non-volatile metabolites were detected, and 617 volatile metabolites were identified. Variable Importance in Projection (VIP) of >1.0 and Fold Change (FC) of ≧2.0 were used to screen differential metabolites. A total of 59 important non-volatile and 39 differential volatile metabolites were screened. Among the non-volatile metabolites, 17 substances were down-regulated, whereas 16 substances were up-regulated. Among the volatile metabolites, 3 substances were down-regulated, while 19 substances were up-regulated. After analysis, some lipids were found to play an important role in the changes to non-volatile substances. This study provides theoretical support for further application of GSH in increasing the oxidation stability of white wine.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Widely Targeted Metabonomic Analysis to Study Effect of GSH on Metabolites of Chardonnay Wine during Simulated Oxidation\",\"authors\":\"Deyan Gao, Cong Wang, Hongmei Shi, Hongmin Liang\",\"doi\":\"10.3390/fermentation9090815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of reduced glutathione (GSH) on non-volatile and volatile metabolites of Chardonnay wine during storage under simulated oxidation were investigated. The metabolites of GSH, which play a key role in the storage of white wine, were identified. In this study, GSHs at 0, 10, and 20 mg/L were added to wine samples and stored at 45 °C for 45 days. Wine samples supplemented with 0 mg/L GSH were used as controls (CK). The samples stored for 45 days were analyzed via ultra-high performance liquid chromatography–tandem mass spectrometry and gas chromatography–tandem mass spectrometry. A total of 1107 non-volatile metabolites were detected, and 617 volatile metabolites were identified. Variable Importance in Projection (VIP) of >1.0 and Fold Change (FC) of ≧2.0 were used to screen differential metabolites. A total of 59 important non-volatile and 39 differential volatile metabolites were screened. Among the non-volatile metabolites, 17 substances were down-regulated, whereas 16 substances were up-regulated. Among the volatile metabolites, 3 substances were down-regulated, while 19 substances were up-regulated. After analysis, some lipids were found to play an important role in the changes to non-volatile substances. This study provides theoretical support for further application of GSH in increasing the oxidation stability of white wine.\",\"PeriodicalId\":48535,\"journal\":{\"name\":\"Fermentation-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/fermentation9090815\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fermentation9090815","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Widely Targeted Metabonomic Analysis to Study Effect of GSH on Metabolites of Chardonnay Wine during Simulated Oxidation
The effects of reduced glutathione (GSH) on non-volatile and volatile metabolites of Chardonnay wine during storage under simulated oxidation were investigated. The metabolites of GSH, which play a key role in the storage of white wine, were identified. In this study, GSHs at 0, 10, and 20 mg/L were added to wine samples and stored at 45 °C for 45 days. Wine samples supplemented with 0 mg/L GSH were used as controls (CK). The samples stored for 45 days were analyzed via ultra-high performance liquid chromatography–tandem mass spectrometry and gas chromatography–tandem mass spectrometry. A total of 1107 non-volatile metabolites were detected, and 617 volatile metabolites were identified. Variable Importance in Projection (VIP) of >1.0 and Fold Change (FC) of ≧2.0 were used to screen differential metabolites. A total of 59 important non-volatile and 39 differential volatile metabolites were screened. Among the non-volatile metabolites, 17 substances were down-regulated, whereas 16 substances were up-regulated. Among the volatile metabolites, 3 substances were down-regulated, while 19 substances were up-regulated. After analysis, some lipids were found to play an important role in the changes to non-volatile substances. This study provides theoretical support for further application of GSH in increasing the oxidation stability of white wine.