{"title":"基于支持向量回归的紧凑贴片天线设计","authors":"X. Dai, D. Mi, H. T. Wu, Y. H. Zhang","doi":"10.13164/re.2022.0339","DOIUrl":null,"url":null,"abstract":". In this paper, support vector regression (SVR) algorithm is used for compact patch antenna design. By etching three T-shaped slots on the ground plane of a rectangle patch antenna, the current distribution on the ground plane is changed and the resonant frequency is reduced. However, there is no reliable formula between the physical parameters of slots and the resonant frequency for antenna design. In this paper, the SVR algorithm is innova-tively used to establish the mapping relationship between four parameters and the resonant frequency. In order to reduce the data samples required to train the SVR model, these four parameters are divided into three groups. This grouping method ensures the reasonable distribution of data samples, and greatly reduces the training data samples and reduces the time to collect data by simulator soft-ware. The hyperparameters are optimized by using 10-fold cross validation. 108 antenna models (data samples) with different geometrical and electrical parameters are designed and simulated for the initial dataset. The SVR model is trained on the 75 data samples with the coefficient of determination (R 2 ) of 0.9736 and is tested on the remainder 33 data samples. With the computation of the SVR model, the size of the proposed antenna decreases by 19.18% compared with that of the conventional rectangle patch antenna. The proposed structure is fabricated and measured. The results show that the proposed SVR model has good generalization on the real antenna model.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design of Compact Patch Antenna Based on Support Vector Regression\",\"authors\":\"X. Dai, D. Mi, H. T. Wu, Y. H. Zhang\",\"doi\":\"10.13164/re.2022.0339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, support vector regression (SVR) algorithm is used for compact patch antenna design. By etching three T-shaped slots on the ground plane of a rectangle patch antenna, the current distribution on the ground plane is changed and the resonant frequency is reduced. However, there is no reliable formula between the physical parameters of slots and the resonant frequency for antenna design. In this paper, the SVR algorithm is innova-tively used to establish the mapping relationship between four parameters and the resonant frequency. In order to reduce the data samples required to train the SVR model, these four parameters are divided into three groups. This grouping method ensures the reasonable distribution of data samples, and greatly reduces the training data samples and reduces the time to collect data by simulator soft-ware. The hyperparameters are optimized by using 10-fold cross validation. 108 antenna models (data samples) with different geometrical and electrical parameters are designed and simulated for the initial dataset. The SVR model is trained on the 75 data samples with the coefficient of determination (R 2 ) of 0.9736 and is tested on the remainder 33 data samples. With the computation of the SVR model, the size of the proposed antenna decreases by 19.18% compared with that of the conventional rectangle patch antenna. The proposed structure is fabricated and measured. The results show that the proposed SVR model has good generalization on the real antenna model.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2022.0339\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2022.0339","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of Compact Patch Antenna Based on Support Vector Regression
. In this paper, support vector regression (SVR) algorithm is used for compact patch antenna design. By etching three T-shaped slots on the ground plane of a rectangle patch antenna, the current distribution on the ground plane is changed and the resonant frequency is reduced. However, there is no reliable formula between the physical parameters of slots and the resonant frequency for antenna design. In this paper, the SVR algorithm is innova-tively used to establish the mapping relationship between four parameters and the resonant frequency. In order to reduce the data samples required to train the SVR model, these four parameters are divided into three groups. This grouping method ensures the reasonable distribution of data samples, and greatly reduces the training data samples and reduces the time to collect data by simulator soft-ware. The hyperparameters are optimized by using 10-fold cross validation. 108 antenna models (data samples) with different geometrical and electrical parameters are designed and simulated for the initial dataset. The SVR model is trained on the 75 data samples with the coefficient of determination (R 2 ) of 0.9736 and is tested on the remainder 33 data samples. With the computation of the SVR model, the size of the proposed antenna decreases by 19.18% compared with that of the conventional rectangle patch antenna. The proposed structure is fabricated and measured. The results show that the proposed SVR model has good generalization on the real antenna model.
期刊介绍:
Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields.
Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering.
The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.