Yin Luo, Mei Sun, Yamin Gao, ShuPing Lang, Yue Wang
{"title":"外源海藻糖对热胁迫小麦光系统II的保护作用","authors":"Yin Luo, Mei Sun, Yamin Gao, ShuPing Lang, Yue Wang","doi":"10.17129/botsci.3038","DOIUrl":null,"url":null,"abstract":"Background: Photosystem II (PSII) is susceptible to heat stress. Plants naturally accumulate trehalose to improve stress tolerance. However, the mechanism by which trehalose affects PSII during heat stress is still unknown. \nQuestions: How does trehalose affect PSII during heat stress? \nStudied species: Triticum aestivum L. \nStudy site and dates: Shanghai, China. 2019-2021. \nMethods: Trehalose -pretreated wheat seedlings suffered from heat stress and their photosynthetic parameters were measured. \nResults: Heat stress caused a reduction in the photochemical efficiency of PSII, the electron transfer rate (ETR(II)), the quantum yield of regulated energy dissipationY(NPQ) and the coefficient of photochemical quenching (qP), but increased the quantum yield of non-regulated energy dissipation of PSII (Y[NO]). The shape of the fast chlorophyll fluorescence induction kinetics (OJIP) curve in the heat-stressed wheat was altered and the primary photochemistry maximum yield of PSII (Fv/Fo) and the PSII performance indicator PIabs were reduced. Accordingly, the activities of PSII and electron transport chain, the amount of ordered α-helix structures and the content of D1 protein also decreased. However, in trehalose-pretreated wheat, D1 protein and protein secondary structures of PSII were both protected, the electron transport activities of PSII and the whole chain were improved and greater fluorescence parameters values were maintained. Lower Y(NO) and more stable OJIP were obtained. \nConclusions: Exogenous trehalose acted a vital role in the protection of the function of PSII, resulting in higherphotosynthetic capacity under heat stress.","PeriodicalId":54375,"journal":{"name":"Botanical Sciences","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous trehalose protects photosystem II in heat-stressed wheat\",\"authors\":\"Yin Luo, Mei Sun, Yamin Gao, ShuPing Lang, Yue Wang\",\"doi\":\"10.17129/botsci.3038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Photosystem II (PSII) is susceptible to heat stress. Plants naturally accumulate trehalose to improve stress tolerance. However, the mechanism by which trehalose affects PSII during heat stress is still unknown. \\nQuestions: How does trehalose affect PSII during heat stress? \\nStudied species: Triticum aestivum L. \\nStudy site and dates: Shanghai, China. 2019-2021. \\nMethods: Trehalose -pretreated wheat seedlings suffered from heat stress and their photosynthetic parameters were measured. \\nResults: Heat stress caused a reduction in the photochemical efficiency of PSII, the electron transfer rate (ETR(II)), the quantum yield of regulated energy dissipationY(NPQ) and the coefficient of photochemical quenching (qP), but increased the quantum yield of non-regulated energy dissipation of PSII (Y[NO]). The shape of the fast chlorophyll fluorescence induction kinetics (OJIP) curve in the heat-stressed wheat was altered and the primary photochemistry maximum yield of PSII (Fv/Fo) and the PSII performance indicator PIabs were reduced. Accordingly, the activities of PSII and electron transport chain, the amount of ordered α-helix structures and the content of D1 protein also decreased. However, in trehalose-pretreated wheat, D1 protein and protein secondary structures of PSII were both protected, the electron transport activities of PSII and the whole chain were improved and greater fluorescence parameters values were maintained. Lower Y(NO) and more stable OJIP were obtained. \\nConclusions: Exogenous trehalose acted a vital role in the protection of the function of PSII, resulting in higherphotosynthetic capacity under heat stress.\",\"PeriodicalId\":54375,\"journal\":{\"name\":\"Botanical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Botanical Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.17129/botsci.3038\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botanical Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.17129/botsci.3038","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Exogenous trehalose protects photosystem II in heat-stressed wheat
Background: Photosystem II (PSII) is susceptible to heat stress. Plants naturally accumulate trehalose to improve stress tolerance. However, the mechanism by which trehalose affects PSII during heat stress is still unknown.
Questions: How does trehalose affect PSII during heat stress?
Studied species: Triticum aestivum L.
Study site and dates: Shanghai, China. 2019-2021.
Methods: Trehalose -pretreated wheat seedlings suffered from heat stress and their photosynthetic parameters were measured.
Results: Heat stress caused a reduction in the photochemical efficiency of PSII, the electron transfer rate (ETR(II)), the quantum yield of regulated energy dissipationY(NPQ) and the coefficient of photochemical quenching (qP), but increased the quantum yield of non-regulated energy dissipation of PSII (Y[NO]). The shape of the fast chlorophyll fluorescence induction kinetics (OJIP) curve in the heat-stressed wheat was altered and the primary photochemistry maximum yield of PSII (Fv/Fo) and the PSII performance indicator PIabs were reduced. Accordingly, the activities of PSII and electron transport chain, the amount of ordered α-helix structures and the content of D1 protein also decreased. However, in trehalose-pretreated wheat, D1 protein and protein secondary structures of PSII were both protected, the electron transport activities of PSII and the whole chain were improved and greater fluorescence parameters values were maintained. Lower Y(NO) and more stable OJIP were obtained.
Conclusions: Exogenous trehalose acted a vital role in the protection of the function of PSII, resulting in higherphotosynthetic capacity under heat stress.
期刊介绍:
Botanical Sciences welcomes contributions that present original, previously unpublished results in Botany, including disciplines such as ecology and evolution, structure and function, systematics and taxonomy, in addition to other areas related to the study of plants. Research reviews are also accepted if they summarize recent advances in a subject, discipline, area, or developmental trend of botany; these should include an analytical, critical, and interpretative approach to a specific topic. Acceptance for reviews will be evaluated first by the Review Editor. Opinion Notes and Book Reviews are also published as long as a relevant contribution in the study of Botany is explained and supported.