Aleksandra Perčin, Ž. Zgorelec, T. Karažija, I. Kisić, Nikolina Župan, I. Šestak
{"title":"便携式X射线荧光法测定不同配方矿物氮肥中的金属","authors":"Aleksandra Perčin, Ž. Zgorelec, T. Karažija, I. Kisić, Nikolina Župan, I. Šestak","doi":"10.3390/agronomy13092282","DOIUrl":null,"url":null,"abstract":"According to the Scopus database, over the last five years, 91 scientific papers with the keyword “pXRF” (portable X-ray fluorescence) were published in indexed journals in the domain of environmental science and agricultural science, which indicates more frequent applications of this technique in scientific research. The pXRF method is characterized by speed, precision, accuracy, and the possibility of a simultaneous analysis of a large number of elements, albeit with higher limits of detection (LODs) as a major disadvantage. The presence of metals in certain phosphate fertilizers is well established, though not to the same extent as in mineral nitrogen fertilizers. The aim of this research was to determine the metal content (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sr, Th, U, Zn, Zr, and Y) in thirteen commercial mineral nitrogen fertilizers via the pXRF method. Six straight fertilizers (ammonium nitrate, ammonium sulphate nitrate, limestone ammonium, nitrate, and urea) and seven complex fertilizers (various NPK formulations), which are different even according to their production technology, produced in Croatia were analyzed using the handheld Vanta C (Olympus) XRF analyzer according to the loose powder method and “point and shoot” technique. Data quality control was performed by analyzing the reference fertilizer samples and certified and reference soil samples. The results revealed that the determined contents of Cd, Mn, and Th were relatively higher in the single-component fertilizers, while the contents of As, Cr, Fe, Ni, Si, Sr, Zn, Zr, Y, and U were relatively higher in the complex fertilizers. Due to the higher LODs of Co and Pb (3 mg/kg) and Mo (2 mg/kg), the pXRF method was not appropriate for the determination of these metals in the analyzed fertilizers. The quantified metal content in the analyzed fertilizers varied as follows: 2.0–8.0 mg As/kg; 11.5–31.3 mg Cd/kg; 29.8–118.5 mg Cr/kg; 7.8–26.3 mg Cu/kg; 16.5–2209 mg Fe/kg; 20.3–5290 mg Mn/kg; 6.2–27.8 mg Ni/kg; 1156–4581 mg Si/kg; 2.0–469.8 mg Sr/kg; 3.0–35.3 mg Th/kg; 2.0–82.8 mg U/kg; 1.4–166 mg Zn/kg; 9.7–15.3 mg Zr/kg; and 16.5–128.0 mg Y/kg. The results indicated that the pXRF method is particularly suitable for measurement and metal detection in complex nitrogen mineral fertilizers with higher amounts of metals, but it is not suitable for the detection and quantification of the lower amounts of As, Zr, Y, Cu, Ni, and Cr in single-component nitrogen fertilizers. Compared to all of the investigated fertilizers, the highest amounts of As, Cr, Cu, Fe, Ni, U, Zn, and Zr were quantified in the NPK 7-20-30 formulation.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metals Contained in Various Formulations of Mineral Nitrogen Fertilizers Determined Using Portable X-ray Fluorescence\",\"authors\":\"Aleksandra Perčin, Ž. Zgorelec, T. Karažija, I. Kisić, Nikolina Župan, I. Šestak\",\"doi\":\"10.3390/agronomy13092282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the Scopus database, over the last five years, 91 scientific papers with the keyword “pXRF” (portable X-ray fluorescence) were published in indexed journals in the domain of environmental science and agricultural science, which indicates more frequent applications of this technique in scientific research. The pXRF method is characterized by speed, precision, accuracy, and the possibility of a simultaneous analysis of a large number of elements, albeit with higher limits of detection (LODs) as a major disadvantage. The presence of metals in certain phosphate fertilizers is well established, though not to the same extent as in mineral nitrogen fertilizers. The aim of this research was to determine the metal content (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sr, Th, U, Zn, Zr, and Y) in thirteen commercial mineral nitrogen fertilizers via the pXRF method. Six straight fertilizers (ammonium nitrate, ammonium sulphate nitrate, limestone ammonium, nitrate, and urea) and seven complex fertilizers (various NPK formulations), which are different even according to their production technology, produced in Croatia were analyzed using the handheld Vanta C (Olympus) XRF analyzer according to the loose powder method and “point and shoot” technique. Data quality control was performed by analyzing the reference fertilizer samples and certified and reference soil samples. The results revealed that the determined contents of Cd, Mn, and Th were relatively higher in the single-component fertilizers, while the contents of As, Cr, Fe, Ni, Si, Sr, Zn, Zr, Y, and U were relatively higher in the complex fertilizers. Due to the higher LODs of Co and Pb (3 mg/kg) and Mo (2 mg/kg), the pXRF method was not appropriate for the determination of these metals in the analyzed fertilizers. The quantified metal content in the analyzed fertilizers varied as follows: 2.0–8.0 mg As/kg; 11.5–31.3 mg Cd/kg; 29.8–118.5 mg Cr/kg; 7.8–26.3 mg Cu/kg; 16.5–2209 mg Fe/kg; 20.3–5290 mg Mn/kg; 6.2–27.8 mg Ni/kg; 1156–4581 mg Si/kg; 2.0–469.8 mg Sr/kg; 3.0–35.3 mg Th/kg; 2.0–82.8 mg U/kg; 1.4–166 mg Zn/kg; 9.7–15.3 mg Zr/kg; and 16.5–128.0 mg Y/kg. The results indicated that the pXRF method is particularly suitable for measurement and metal detection in complex nitrogen mineral fertilizers with higher amounts of metals, but it is not suitable for the detection and quantification of the lower amounts of As, Zr, Y, Cu, Ni, and Cr in single-component nitrogen fertilizers. Compared to all of the investigated fertilizers, the highest amounts of As, Cr, Cu, Fe, Ni, U, Zn, and Zr were quantified in the NPK 7-20-30 formulation.\",\"PeriodicalId\":56066,\"journal\":{\"name\":\"Agronomy-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/agronomy13092282\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agronomy13092282","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Metals Contained in Various Formulations of Mineral Nitrogen Fertilizers Determined Using Portable X-ray Fluorescence
According to the Scopus database, over the last five years, 91 scientific papers with the keyword “pXRF” (portable X-ray fluorescence) were published in indexed journals in the domain of environmental science and agricultural science, which indicates more frequent applications of this technique in scientific research. The pXRF method is characterized by speed, precision, accuracy, and the possibility of a simultaneous analysis of a large number of elements, albeit with higher limits of detection (LODs) as a major disadvantage. The presence of metals in certain phosphate fertilizers is well established, though not to the same extent as in mineral nitrogen fertilizers. The aim of this research was to determine the metal content (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sr, Th, U, Zn, Zr, and Y) in thirteen commercial mineral nitrogen fertilizers via the pXRF method. Six straight fertilizers (ammonium nitrate, ammonium sulphate nitrate, limestone ammonium, nitrate, and urea) and seven complex fertilizers (various NPK formulations), which are different even according to their production technology, produced in Croatia were analyzed using the handheld Vanta C (Olympus) XRF analyzer according to the loose powder method and “point and shoot” technique. Data quality control was performed by analyzing the reference fertilizer samples and certified and reference soil samples. The results revealed that the determined contents of Cd, Mn, and Th were relatively higher in the single-component fertilizers, while the contents of As, Cr, Fe, Ni, Si, Sr, Zn, Zr, Y, and U were relatively higher in the complex fertilizers. Due to the higher LODs of Co and Pb (3 mg/kg) and Mo (2 mg/kg), the pXRF method was not appropriate for the determination of these metals in the analyzed fertilizers. The quantified metal content in the analyzed fertilizers varied as follows: 2.0–8.0 mg As/kg; 11.5–31.3 mg Cd/kg; 29.8–118.5 mg Cr/kg; 7.8–26.3 mg Cu/kg; 16.5–2209 mg Fe/kg; 20.3–5290 mg Mn/kg; 6.2–27.8 mg Ni/kg; 1156–4581 mg Si/kg; 2.0–469.8 mg Sr/kg; 3.0–35.3 mg Th/kg; 2.0–82.8 mg U/kg; 1.4–166 mg Zn/kg; 9.7–15.3 mg Zr/kg; and 16.5–128.0 mg Y/kg. The results indicated that the pXRF method is particularly suitable for measurement and metal detection in complex nitrogen mineral fertilizers with higher amounts of metals, but it is not suitable for the detection and quantification of the lower amounts of As, Zr, Y, Cu, Ni, and Cr in single-component nitrogen fertilizers. Compared to all of the investigated fertilizers, the highest amounts of As, Cr, Cu, Fe, Ni, U, Zn, and Zr were quantified in the NPK 7-20-30 formulation.
Agronomy-BaselAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
6.20
自引率
13.50%
发文量
2665
审稿时长
20.32 days
期刊介绍:
Agronomy (ISSN 2073-4395) is an international and cross-disciplinary scholarly journal on agronomy and agroecology. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.