Eduardo Leonarski, Giulia VALAR MARTINI, Karina Cesca, M. F. da Silva, Rosana Goldbeck, Patrícia Poletto
{"title":"从康普茶中提取细菌纤维素的酶法升级循环以获得纤维素二糖","authors":"Eduardo Leonarski, Giulia VALAR MARTINI, Karina Cesca, M. F. da Silva, Rosana Goldbeck, Patrícia Poletto","doi":"10.35812/cellulosechemtechnol.2023.57.13","DOIUrl":null,"url":null,"abstract":"\"The production of kombucha generates bacterial cellulose (BC) as a by-product, which is usually discarded. However, BC can be a source of cellobiose, a disaccharide with prebiotic benefits. In this study, the yield of cellobiose released from BC collected from a medium-sized kombucha producer was evaluated by enzymatic hydrolysis using the commercial cocktail Celluclast 1.5 L. The BC was hydrolyzed at solid contents of 2, 3 and 4% (m/v), enzyme dosage of 2.2 U/g cellulose, pH 5, 50 °C, and 150 rpm for 72 h. Industrial BC was characterized by FTIR and XRD to confirm the presence of common BC characteristics. The same analyses were performed after enzymatic hydrolysis, resulting in a change in crystallinity. The maximum cellobiose production (10-11 g/L) was obtained with 4% BC (w/v) in 48 h of hydrolysis; there was no significant difference when the time was extended to 72 h. The maximum glucose production under the same conditions was 3 g/L, showing that Celluclast 1.5 L has high cellobiose selectivity (78%). However, the cellobiose yield only ranged from 35 to 26%, indicating that cellobiose accumulation in the medium caused enzyme inhibition.\"","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ENZYMATIC UPCYCLING OF BACTERIAL CELLULOSE FROM KOMBUCHA TO OBTAIN CELLOBIOSE\",\"authors\":\"Eduardo Leonarski, Giulia VALAR MARTINI, Karina Cesca, M. F. da Silva, Rosana Goldbeck, Patrícia Poletto\",\"doi\":\"10.35812/cellulosechemtechnol.2023.57.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"The production of kombucha generates bacterial cellulose (BC) as a by-product, which is usually discarded. However, BC can be a source of cellobiose, a disaccharide with prebiotic benefits. In this study, the yield of cellobiose released from BC collected from a medium-sized kombucha producer was evaluated by enzymatic hydrolysis using the commercial cocktail Celluclast 1.5 L. The BC was hydrolyzed at solid contents of 2, 3 and 4% (m/v), enzyme dosage of 2.2 U/g cellulose, pH 5, 50 °C, and 150 rpm for 72 h. Industrial BC was characterized by FTIR and XRD to confirm the presence of common BC characteristics. The same analyses were performed after enzymatic hydrolysis, resulting in a change in crystallinity. The maximum cellobiose production (10-11 g/L) was obtained with 4% BC (w/v) in 48 h of hydrolysis; there was no significant difference when the time was extended to 72 h. The maximum glucose production under the same conditions was 3 g/L, showing that Celluclast 1.5 L has high cellobiose selectivity (78%). However, the cellobiose yield only ranged from 35 to 26%, indicating that cellobiose accumulation in the medium caused enzyme inhibition.\\\"\",\"PeriodicalId\":10130,\"journal\":{\"name\":\"Cellulose Chemistry and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.35812/cellulosechemtechnol.2023.57.13\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2023.57.13","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
ENZYMATIC UPCYCLING OF BACTERIAL CELLULOSE FROM KOMBUCHA TO OBTAIN CELLOBIOSE
"The production of kombucha generates bacterial cellulose (BC) as a by-product, which is usually discarded. However, BC can be a source of cellobiose, a disaccharide with prebiotic benefits. In this study, the yield of cellobiose released from BC collected from a medium-sized kombucha producer was evaluated by enzymatic hydrolysis using the commercial cocktail Celluclast 1.5 L. The BC was hydrolyzed at solid contents of 2, 3 and 4% (m/v), enzyme dosage of 2.2 U/g cellulose, pH 5, 50 °C, and 150 rpm for 72 h. Industrial BC was characterized by FTIR and XRD to confirm the presence of common BC characteristics. The same analyses were performed after enzymatic hydrolysis, resulting in a change in crystallinity. The maximum cellobiose production (10-11 g/L) was obtained with 4% BC (w/v) in 48 h of hydrolysis; there was no significant difference when the time was extended to 72 h. The maximum glucose production under the same conditions was 3 g/L, showing that Celluclast 1.5 L has high cellobiose selectivity (78%). However, the cellobiose yield only ranged from 35 to 26%, indicating that cellobiose accumulation in the medium caused enzyme inhibition."
期刊介绍:
Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry.
Topics include:
• studies of structure and properties
• biological and industrial development
• analytical methods
• chemical and microbiological modifications
• interactions with other materials