掺杂不同过渡金属原子的氢氮化硼单层对气体分子吸附和催化性能的第一性原理研究

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Catalysis Surveys from Asia Pub Date : 2021-11-05 DOI:10.1007/s10563-021-09350-8
Si-Ying Zhong, Shao-Yi Wu, Xing-Yuan Yu, Gao-Qiang Shen, Li Yan, Kai-Lai Xu
{"title":"掺杂不同过渡金属原子的氢氮化硼单层对气体分子吸附和催化性能的第一性原理研究","authors":"Si-Ying Zhong,&nbsp;Shao-Yi Wu,&nbsp;Xing-Yuan Yu,&nbsp;Gao-Qiang Shen,&nbsp;Li Yan,&nbsp;Kai-Lai Xu","doi":"10.1007/s10563-021-09350-8","DOIUrl":null,"url":null,"abstract":"<div><p>The adsorption properties for some gas molecules (H<sub>2</sub>, N<sub>2</sub>, CO, NO and CO<sub>2</sub>) on pristine and transition metal-doped h-BN monolayer are investigated by using density functional theory (DFT) calculations. In contrast with N vacancy (V<sub>N</sub>) substrates, those with B vacancy (V<sub>B</sub>) are more easily doped with metal atoms, among which Ti atom doping shows the lowest binding energy. For the adsorption of these gas molecules, NO is most easily adsorbed on h-BN monolayer with metal dopants, especially Pt doped system yields the lowest adsorption energy of NO. Since a NO molecule on Pt doped h-BN monolayer could not be directly decomposed into O<sub>ads</sub> and N<sub>ads</sub> due to the high reaction energy barrier (≈ 2.00 eV), the (NO)<sub>2</sub> dimmer can interact with Pt to form a five-membered ring or a four-membered ring through two different Langmuir–Hinshelwood (LH) mechanisms for NO reduction catalytic reaction, respectively. The LH1 reaction process needs to overcome relatively lower energy barriers, while the product of the LH2 mechanism has a more stable structure. For the catalytic process of CO oxidation, the remained O<sub>ads</sub> can bind with CO and form CO<sub>2</sub>, by overcoming a much lower energy barrier of only 0.14 eV. It seems that Pt doping can enhance the adsorb capacity of h-BN monolayer for the gas molecules and the potential catalytic activity for electrochemical reduction of NO.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"26 2","pages":"69 - 79"},"PeriodicalIF":2.1000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10563-021-09350-8.pdf","citationCount":"4","resultStr":"{\"title\":\"First-Principles Studies of the Adsorption and Catalytic Properties for Gas Molecules on h-BN Monolayer Doped with Various Transition Metal Atoms\",\"authors\":\"Si-Ying Zhong,&nbsp;Shao-Yi Wu,&nbsp;Xing-Yuan Yu,&nbsp;Gao-Qiang Shen,&nbsp;Li Yan,&nbsp;Kai-Lai Xu\",\"doi\":\"10.1007/s10563-021-09350-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The adsorption properties for some gas molecules (H<sub>2</sub>, N<sub>2</sub>, CO, NO and CO<sub>2</sub>) on pristine and transition metal-doped h-BN monolayer are investigated by using density functional theory (DFT) calculations. In contrast with N vacancy (V<sub>N</sub>) substrates, those with B vacancy (V<sub>B</sub>) are more easily doped with metal atoms, among which Ti atom doping shows the lowest binding energy. For the adsorption of these gas molecules, NO is most easily adsorbed on h-BN monolayer with metal dopants, especially Pt doped system yields the lowest adsorption energy of NO. Since a NO molecule on Pt doped h-BN monolayer could not be directly decomposed into O<sub>ads</sub> and N<sub>ads</sub> due to the high reaction energy barrier (≈ 2.00 eV), the (NO)<sub>2</sub> dimmer can interact with Pt to form a five-membered ring or a four-membered ring through two different Langmuir–Hinshelwood (LH) mechanisms for NO reduction catalytic reaction, respectively. The LH1 reaction process needs to overcome relatively lower energy barriers, while the product of the LH2 mechanism has a more stable structure. For the catalytic process of CO oxidation, the remained O<sub>ads</sub> can bind with CO and form CO<sub>2</sub>, by overcoming a much lower energy barrier of only 0.14 eV. It seems that Pt doping can enhance the adsorb capacity of h-BN monolayer for the gas molecules and the potential catalytic activity for electrochemical reduction of NO.</p></div>\",\"PeriodicalId\":509,\"journal\":{\"name\":\"Catalysis Surveys from Asia\",\"volume\":\"26 2\",\"pages\":\"69 - 79\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10563-021-09350-8.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Surveys from Asia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10563-021-09350-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-021-09350-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 4

摘要

利用密度泛函理论(DFT)计算研究了原始和过渡金属掺杂h-BN单层对H2、N2、CO、NO和CO2等气体分子的吸附性能。与N空位(VN)衬底相比,B空位(VB)衬底更容易掺杂金属原子,其中Ti原子掺杂的结合能最低。对于这些气体分子的吸附,有金属掺杂的h-BN单层最容易吸附NO,特别是Pt掺杂体系对NO的吸附能最低。由于Pt掺杂h-BN单层上的NO分子由于反应能垒高(≈2.00 eV)而不能直接分解为Oads和Nads, (NO)2二聚体可以通过两种不同的Langmuir-Hinshelwood (LH)机制分别与Pt相互作用形成五元环或四元环进行NO还原催化反应。LH1反应过程需要克服相对较低的能垒,而LH2机制的产物具有更稳定的结构。对于CO氧化的催化过程,剩余的负载可以通过克服低得多的能量垒(仅为0.14 eV)与CO结合形成CO2。Pt掺杂可以增强h-BN单层膜对气体分子的吸附能力和电化学还原NO的潜在催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First-Principles Studies of the Adsorption and Catalytic Properties for Gas Molecules on h-BN Monolayer Doped with Various Transition Metal Atoms

The adsorption properties for some gas molecules (H2, N2, CO, NO and CO2) on pristine and transition metal-doped h-BN monolayer are investigated by using density functional theory (DFT) calculations. In contrast with N vacancy (VN) substrates, those with B vacancy (VB) are more easily doped with metal atoms, among which Ti atom doping shows the lowest binding energy. For the adsorption of these gas molecules, NO is most easily adsorbed on h-BN monolayer with metal dopants, especially Pt doped system yields the lowest adsorption energy of NO. Since a NO molecule on Pt doped h-BN monolayer could not be directly decomposed into Oads and Nads due to the high reaction energy barrier (≈ 2.00 eV), the (NO)2 dimmer can interact with Pt to form a five-membered ring or a four-membered ring through two different Langmuir–Hinshelwood (LH) mechanisms for NO reduction catalytic reaction, respectively. The LH1 reaction process needs to overcome relatively lower energy barriers, while the product of the LH2 mechanism has a more stable structure. For the catalytic process of CO oxidation, the remained Oads can bind with CO and form CO2, by overcoming a much lower energy barrier of only 0.14 eV. It seems that Pt doping can enhance the adsorb capacity of h-BN monolayer for the gas molecules and the potential catalytic activity for electrochemical reduction of NO.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Surveys from Asia
Catalysis Surveys from Asia 化学-物理化学
CiteScore
4.80
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.
期刊最新文献
Modified Montmorillonite Catalysed Ultrasonic Assisted one-pot Synthesis of Novel 2,3-dihydroisoxazolo[5,4-d] pyrimidin-4(7H)-ones as Potential Anticancer Agents Oxidized-Sulfur Decorated Two-Dimensional Cobalt(II) Porphyrin Covalent Organic Framework as a Photocatalyst and Proof-on Action Study in Oxidative Cyclization of Thioamide In-situ/Operando Mössbauer Spectroscopic Investigations of Fe-involved Metal Hydroxide-Based OER Electrocatalysts A Review on Graphene Oxide-Based Ferrite Nanocomposites for Catalytic Applications Progress on the Catalysts for the Gas-Phase Carbonylation Synthesis of Dimethyl Carbonate from Methyl Nitrite and CO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1