使用量子计算算法描述CO2–NH3相互作用的反应和振动能量学

IF 4.2 Q2 QUANTUM SCIENCE & TECHNOLOGY AVS quantum science Pub Date : 2023-03-01 DOI:10.1116/5.0137750
Manh Tien Nguyen, Yueh-Lin Lee, D. Alfonso, Qing Shao, Yuhua Duan
{"title":"使用量子计算算法描述CO2–NH3相互作用的反应和振动能量学","authors":"Manh Tien Nguyen, Yueh-Lin Lee, D. Alfonso, Qing Shao, Yuhua Duan","doi":"10.1116/5.0137750","DOIUrl":null,"url":null,"abstract":"CO2 capture is critical to solving global warming. Amine-based solvents are extensively used to chemically absorb CO2. Thus, it is crucial to study the chemical absorption of CO2 by amine-based solvents to better understand and optimize CO2 capture processes. Here, we use quantum computing algorithms to quantify molecular vibrational energies and reaction pathways between CO2 and a simplified amine-based solvent model—NH3. Molecular vibrational properties are important to understanding kinetics of reactions. However, the molecule size correlates with the strength of anharmonicity effect on vibrational properties, which can be challenging to address using classical computing. Quantum computing can help enhance molecular vibrational calculations by including anharmonicity. We implement a variational quantum eigensolver (VQE) algorithm in a quantum simulator to calculate ground state vibrational energies of reactants and products of the CO2 and NH3 reaction. The VQE calculations yield ground vibrational energies of CO2 and NH3 with similar accuracy to classical computing. In the presence of hardware noise, Compact Heuristic for Chemistry (CHC) ansatz with shallower circuit depth performs better than Unitary Vibrational Coupled Cluster. The “Zero Noise Extrapolation” error-mitigation approach in combination with CHC ansatz improves the vibrational calculation accuracy. Excited vibrational states are accessed with quantum equation of motion method for CO2 and NH3. Using quantum Hartree–Fock (HF) embedding algorithm to calculate electronic energies, the corresponding reaction profile compares favorably with Coupled Cluster Singles and Doubles while being more accurate than HF. Our research showcases quantum computing applications in the study of CO2 capture reactions.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Description of reaction and vibrational energetics of CO2–NH3 interaction using quantum computing algorithms\",\"authors\":\"Manh Tien Nguyen, Yueh-Lin Lee, D. Alfonso, Qing Shao, Yuhua Duan\",\"doi\":\"10.1116/5.0137750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CO2 capture is critical to solving global warming. Amine-based solvents are extensively used to chemically absorb CO2. Thus, it is crucial to study the chemical absorption of CO2 by amine-based solvents to better understand and optimize CO2 capture processes. Here, we use quantum computing algorithms to quantify molecular vibrational energies and reaction pathways between CO2 and a simplified amine-based solvent model—NH3. Molecular vibrational properties are important to understanding kinetics of reactions. However, the molecule size correlates with the strength of anharmonicity effect on vibrational properties, which can be challenging to address using classical computing. Quantum computing can help enhance molecular vibrational calculations by including anharmonicity. We implement a variational quantum eigensolver (VQE) algorithm in a quantum simulator to calculate ground state vibrational energies of reactants and products of the CO2 and NH3 reaction. The VQE calculations yield ground vibrational energies of CO2 and NH3 with similar accuracy to classical computing. In the presence of hardware noise, Compact Heuristic for Chemistry (CHC) ansatz with shallower circuit depth performs better than Unitary Vibrational Coupled Cluster. The “Zero Noise Extrapolation” error-mitigation approach in combination with CHC ansatz improves the vibrational calculation accuracy. Excited vibrational states are accessed with quantum equation of motion method for CO2 and NH3. Using quantum Hartree–Fock (HF) embedding algorithm to calculate electronic energies, the corresponding reaction profile compares favorably with Coupled Cluster Singles and Doubles while being more accurate than HF. Our research showcases quantum computing applications in the study of CO2 capture reactions.\",\"PeriodicalId\":93525,\"journal\":{\"name\":\"AVS quantum science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVS quantum science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/5.0137750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0137750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳捕获是解决全球变暖问题的关键。胺基溶剂被广泛用于化学吸收二氧化碳。因此,研究胺基溶剂对CO2的化学吸收对于更好地理解和优化CO2捕获过程至关重要。在这里,我们使用量子计算算法来量化CO2与简化胺基溶剂模型- nh3之间的分子振动能和反应途径。分子的振动性质对理解反应动力学是很重要的。然而,分子大小与振动性质的非调和效应的强度相关,这可能是使用经典计算来解决的挑战。量子计算可以通过包含非调和性来帮助增强分子振动计算。我们在量子模拟器中实现了一种变分量子特征求解(VQE)算法来计算CO2和NH3反应的反应物和生成物的基态振动能量。VQE计算得到CO2和NH3的地面振动能,其精度与经典计算相似。在存在硬件噪声的情况下,电路深度较浅的化学紧凑型启发式(Compact Heuristic for Chemistry, CHC)簇的性能优于单一振动耦合簇。“零噪声外推”误差缓解方法与CHC分析相结合,提高了振动计算精度。用量子运动方程方法得到了CO2和NH3的激发态。采用量子Hartree-Fock (HF)嵌入算法计算电子能,相应的反应谱优于偶联簇单和双反应谱,而比偶联簇双反应谱更准确。我们的研究展示了量子计算在二氧化碳捕获反应研究中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Description of reaction and vibrational energetics of CO2–NH3 interaction using quantum computing algorithms
CO2 capture is critical to solving global warming. Amine-based solvents are extensively used to chemically absorb CO2. Thus, it is crucial to study the chemical absorption of CO2 by amine-based solvents to better understand and optimize CO2 capture processes. Here, we use quantum computing algorithms to quantify molecular vibrational energies and reaction pathways between CO2 and a simplified amine-based solvent model—NH3. Molecular vibrational properties are important to understanding kinetics of reactions. However, the molecule size correlates with the strength of anharmonicity effect on vibrational properties, which can be challenging to address using classical computing. Quantum computing can help enhance molecular vibrational calculations by including anharmonicity. We implement a variational quantum eigensolver (VQE) algorithm in a quantum simulator to calculate ground state vibrational energies of reactants and products of the CO2 and NH3 reaction. The VQE calculations yield ground vibrational energies of CO2 and NH3 with similar accuracy to classical computing. In the presence of hardware noise, Compact Heuristic for Chemistry (CHC) ansatz with shallower circuit depth performs better than Unitary Vibrational Coupled Cluster. The “Zero Noise Extrapolation” error-mitigation approach in combination with CHC ansatz improves the vibrational calculation accuracy. Excited vibrational states are accessed with quantum equation of motion method for CO2 and NH3. Using quantum Hartree–Fock (HF) embedding algorithm to calculate electronic energies, the corresponding reaction profile compares favorably with Coupled Cluster Singles and Doubles while being more accurate than HF. Our research showcases quantum computing applications in the study of CO2 capture reactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
0
期刊最新文献
Effects of multi-photon states in the calibration of single-photon detectors based on a portable bi-photon source. Sub-nanosecond coherent optical manipulation of a single aromatic molecule at cryogenic temperature Single-photon-based clock analysis and recovery in quantum key distribution Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions Estimation of the number of single-photon emitters for multiple fluorophores with the same spectral signature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1