{"title":"服务不同类型用户请求的移动边缘系统中基于深度q学习的资源分配和负载平衡","authors":"Önem Yildiz, R. Sokullu","doi":"10.2478/jee-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract With the expansion of the communicative and perceptual capabilities of mobile devices in recent years, the number of complex and high computational applications has also increased rendering traditional methods of traffic management and resource allocation quite insufficient. Recently, mobile edge computing (MEC) has emerged as a new viable solution to these problems. It can provide additional computing features at the edge of the network and allow alleviation of the resource limit of mobile devices while increasing the performance for critical applications especially in terms of latency. In this work, we addressed the issue of reducing the service delay by choosing the optimal path in the MEC network, which consists of multiple MEC servers that has different capabilities, applying network load balancing where multiple requests need to be handled simultaneously and routing selection based on a deep- Q network (DQN) algorithm. A novel traffic control and resource allocation method is proposed based on deep Q-learning (DQL) which allows reducing the end-to-end delay in cellular networks and in the mobile edge network. Real life traffic scenarios with various types of user requests are considered and a novel DQL resource allocation scheme which adaptively assigns computing and network resources is proposed. The algorithm optimizes traffic distribution between servers reducing the total service time and balancing the use of available resources under varying environmental conditions.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"74 1","pages":"48 - 56"},"PeriodicalIF":1.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Q-Learning based resource allocation and load balancing in a mobile edge system serving different types of user requests\",\"authors\":\"Önem Yildiz, R. Sokullu\",\"doi\":\"10.2478/jee-2023-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract With the expansion of the communicative and perceptual capabilities of mobile devices in recent years, the number of complex and high computational applications has also increased rendering traditional methods of traffic management and resource allocation quite insufficient. Recently, mobile edge computing (MEC) has emerged as a new viable solution to these problems. It can provide additional computing features at the edge of the network and allow alleviation of the resource limit of mobile devices while increasing the performance for critical applications especially in terms of latency. In this work, we addressed the issue of reducing the service delay by choosing the optimal path in the MEC network, which consists of multiple MEC servers that has different capabilities, applying network load balancing where multiple requests need to be handled simultaneously and routing selection based on a deep- Q network (DQN) algorithm. A novel traffic control and resource allocation method is proposed based on deep Q-learning (DQL) which allows reducing the end-to-end delay in cellular networks and in the mobile edge network. Real life traffic scenarios with various types of user requests are considered and a novel DQL resource allocation scheme which adaptively assigns computing and network resources is proposed. The algorithm optimizes traffic distribution between servers reducing the total service time and balancing the use of available resources under varying environmental conditions.\",\"PeriodicalId\":15661,\"journal\":{\"name\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"volume\":\"74 1\",\"pages\":\"48 - 56\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/jee-2023-0006\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/jee-2023-0006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Deep Q-Learning based resource allocation and load balancing in a mobile edge system serving different types of user requests
Abstract With the expansion of the communicative and perceptual capabilities of mobile devices in recent years, the number of complex and high computational applications has also increased rendering traditional methods of traffic management and resource allocation quite insufficient. Recently, mobile edge computing (MEC) has emerged as a new viable solution to these problems. It can provide additional computing features at the edge of the network and allow alleviation of the resource limit of mobile devices while increasing the performance for critical applications especially in terms of latency. In this work, we addressed the issue of reducing the service delay by choosing the optimal path in the MEC network, which consists of multiple MEC servers that has different capabilities, applying network load balancing where multiple requests need to be handled simultaneously and routing selection based on a deep- Q network (DQN) algorithm. A novel traffic control and resource allocation method is proposed based on deep Q-learning (DQL) which allows reducing the end-to-end delay in cellular networks and in the mobile edge network. Real life traffic scenarios with various types of user requests are considered and a novel DQL resource allocation scheme which adaptively assigns computing and network resources is proposed. The algorithm optimizes traffic distribution between servers reducing the total service time and balancing the use of available resources under varying environmental conditions.
期刊介绍:
The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising.
-Automation and Control-
Computer Engineering-
Electronics and Microelectronics-
Electro-physics and Electromagnetism-
Material Science-
Measurement and Metrology-
Power Engineering and Energy Conversion-
Signal Processing and Telecommunications