使用PyBLP进行差异化产品需求评估的最佳实践

IF 2.8 3区 经济学 Q1 ECONOMICS Rand Journal of Economics Pub Date : 2020-11-26 DOI:10.1111/1756-2171.12352
Christopher T. Conlon, J. Gortmaker
{"title":"使用PyBLP进行差异化产品需求评估的最佳实践","authors":"Christopher T. Conlon, J. Gortmaker","doi":"10.1111/1756-2171.12352","DOIUrl":null,"url":null,"abstract":"Differentiated products demand systems are a workhorse for understanding the price effects of mergers, the value of new goods, and the contribution of products to seller networks. Berry, Levinsohn, and Pakes (1995) provide a flexible random coefficients logit model which accounts for the endogeneity of prices. This article reviews and combines several recent advances related to the estimation of BLP-type problems and implements an extensible generic interface via the PyBLP package. Monte Carlo experiments and replications suggest different conclusions than the prior literature: multiple local optima appear to be rare in well-identified problems; good performance is possible even in small samples, particularly when “optimal instruments” are employed along with supply-side restrictions. If Python is installed on your computer, PyBLP can be installed with the following command: pip install pyblp Up-to-date documentation for the package is available at https://pyblp.readthedocs.io. ∗Thanks to Steve Berry, Jeremy Fox, Phil Haile, Mathias Reynaert, and Frank Verboven and seminar participants at NYU, Rochester, and the 2019 IIOC conference. Thanks to the editor Marc Rysman and to three anonymous referees. Daniel Stackman provided excellent research assistance. Any remaining errors are our own. †New York University, Stern School of Business: cconlon@stern.nyu.edu ‡Harvard University: jgortmaker@g.harvard.edu","PeriodicalId":51342,"journal":{"name":"Rand Journal of Economics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1756-2171.12352","citationCount":"82","resultStr":"{\"title\":\"Best practices for differentiated products demand estimation with PyBLP\",\"authors\":\"Christopher T. Conlon, J. Gortmaker\",\"doi\":\"10.1111/1756-2171.12352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differentiated products demand systems are a workhorse for understanding the price effects of mergers, the value of new goods, and the contribution of products to seller networks. Berry, Levinsohn, and Pakes (1995) provide a flexible random coefficients logit model which accounts for the endogeneity of prices. This article reviews and combines several recent advances related to the estimation of BLP-type problems and implements an extensible generic interface via the PyBLP package. Monte Carlo experiments and replications suggest different conclusions than the prior literature: multiple local optima appear to be rare in well-identified problems; good performance is possible even in small samples, particularly when “optimal instruments” are employed along with supply-side restrictions. If Python is installed on your computer, PyBLP can be installed with the following command: pip install pyblp Up-to-date documentation for the package is available at https://pyblp.readthedocs.io. ∗Thanks to Steve Berry, Jeremy Fox, Phil Haile, Mathias Reynaert, and Frank Verboven and seminar participants at NYU, Rochester, and the 2019 IIOC conference. Thanks to the editor Marc Rysman and to three anonymous referees. Daniel Stackman provided excellent research assistance. Any remaining errors are our own. †New York University, Stern School of Business: cconlon@stern.nyu.edu ‡Harvard University: jgortmaker@g.harvard.edu\",\"PeriodicalId\":51342,\"journal\":{\"name\":\"Rand Journal of Economics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/1756-2171.12352\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rand Journal of Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1111/1756-2171.12352\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rand Journal of Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1111/1756-2171.12352","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 82

摘要

差异化产品需求系统是理解合并的价格效应、新产品的价值以及产品对卖方网络的贡献的重要工具。Berry, Levinsohn和Pakes(1995)提供了一个灵活的随机系数logit模型来解释价格的内生性。本文回顾并结合了与blp类型问题估计相关的几个最新进展,并通过PyBLP包实现了一个可扩展的泛型接口。蒙特卡罗实验和重复实验得出了与先前文献不同的结论:在识别良好的问题中,多个局部最优似乎很少见;即使在小样本中也可能有良好的性能,特别是当“最佳仪器”与供应侧限制一起使用时。如果您的计算机上安装了Python,可以使用以下命令安装PyBLP: pip install PyBLP该包的最新文档可在https://pyblp.readthedocs.io上获得。*感谢Steve Berry, Jeremy Fox, Phil Haile, Mathias Reynaert, Frank Verboven和纽约大学罗切斯特分校的研讨会参与者,以及2019年IIOC会议。感谢编辑Marc Rysman和三位匿名裁判。丹尼尔·斯塔克曼提供了出色的研究协助。任何剩下的错误都是我们自己的。†纽约大学斯特恩商学院:cconlon@stern.nyu.edu哈佛大学:jgortmaker@g.harvard.edu
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Best practices for differentiated products demand estimation with PyBLP
Differentiated products demand systems are a workhorse for understanding the price effects of mergers, the value of new goods, and the contribution of products to seller networks. Berry, Levinsohn, and Pakes (1995) provide a flexible random coefficients logit model which accounts for the endogeneity of prices. This article reviews and combines several recent advances related to the estimation of BLP-type problems and implements an extensible generic interface via the PyBLP package. Monte Carlo experiments and replications suggest different conclusions than the prior literature: multiple local optima appear to be rare in well-identified problems; good performance is possible even in small samples, particularly when “optimal instruments” are employed along with supply-side restrictions. If Python is installed on your computer, PyBLP can be installed with the following command: pip install pyblp Up-to-date documentation for the package is available at https://pyblp.readthedocs.io. ∗Thanks to Steve Berry, Jeremy Fox, Phil Haile, Mathias Reynaert, and Frank Verboven and seminar participants at NYU, Rochester, and the 2019 IIOC conference. Thanks to the editor Marc Rysman and to three anonymous referees. Daniel Stackman provided excellent research assistance. Any remaining errors are our own. †New York University, Stern School of Business: cconlon@stern.nyu.edu ‡Harvard University: jgortmaker@g.harvard.edu
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
4.30%
发文量
28
期刊介绍: The RAND Journal of Economics publishes theoretical and empirical research on industrial organization and closely related topics, including contracts, organizations, law and economics, and regulation. The RAND Journal of Economics, formerly the Bell Journal of Economics, is published quarterly by The RAND Corporation, in conjunction with Blackwell Publishing.
期刊最新文献
Health insurance menu design for large employers Data‐enabled learning, network effects, and competitive advantage The effect of privacy regulation on the data industry: empirical evidence from GDPR Disclosure and pricing of attributes Advantageous selection with intermediaries: a study of GSE‐securitized mortgage loans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1