{"title":"农业系统中的金属基纳米颗粒:行为、运输和与植物的相互作用","authors":"Hao Chen","doi":"10.1080/09542299.2018.1520050","DOIUrl":null,"url":null,"abstract":"ABSTRACT With the fast-developing nanotechnology, metal based nanoparticles (NPs) production and application are increased significantly. These metal based NPs can enter agricultural land through both direct and indirect pathways. This review presents an overview of the fate and transport of metal based NPs and their interactions with plants in agricultural ecosystem system. The physical chemical properties of both metal based NPs (e.g. size, surface charge, surface coating) and soil matrix (e.g. pH, ionic strength, mineral composition, dissolved organic matter) all play important roles in determining the mobility, transformation and potential risks of metal based NPs in plant and soil system. NPs can be accumulated to plant roots and translocated to other parts of the plants. The properties of both plant and metal based NPs are playing critical roles to this process. Systematic research of metal based NPs in environmentally relevant concentrations and conditions is needed for the future study.","PeriodicalId":55264,"journal":{"name":"Chemical Speciation and Bioavailability","volume":"30 1","pages":"123 - 134"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09542299.2018.1520050","citationCount":"103","resultStr":"{\"title\":\"Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants\",\"authors\":\"Hao Chen\",\"doi\":\"10.1080/09542299.2018.1520050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT With the fast-developing nanotechnology, metal based nanoparticles (NPs) production and application are increased significantly. These metal based NPs can enter agricultural land through both direct and indirect pathways. This review presents an overview of the fate and transport of metal based NPs and their interactions with plants in agricultural ecosystem system. The physical chemical properties of both metal based NPs (e.g. size, surface charge, surface coating) and soil matrix (e.g. pH, ionic strength, mineral composition, dissolved organic matter) all play important roles in determining the mobility, transformation and potential risks of metal based NPs in plant and soil system. NPs can be accumulated to plant roots and translocated to other parts of the plants. The properties of both plant and metal based NPs are playing critical roles to this process. Systematic research of metal based NPs in environmentally relevant concentrations and conditions is needed for the future study.\",\"PeriodicalId\":55264,\"journal\":{\"name\":\"Chemical Speciation and Bioavailability\",\"volume\":\"30 1\",\"pages\":\"123 - 134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09542299.2018.1520050\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Speciation and Bioavailability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09542299.2018.1520050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Speciation and Bioavailability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09542299.2018.1520050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants
ABSTRACT With the fast-developing nanotechnology, metal based nanoparticles (NPs) production and application are increased significantly. These metal based NPs can enter agricultural land through both direct and indirect pathways. This review presents an overview of the fate and transport of metal based NPs and their interactions with plants in agricultural ecosystem system. The physical chemical properties of both metal based NPs (e.g. size, surface charge, surface coating) and soil matrix (e.g. pH, ionic strength, mineral composition, dissolved organic matter) all play important roles in determining the mobility, transformation and potential risks of metal based NPs in plant and soil system. NPs can be accumulated to plant roots and translocated to other parts of the plants. The properties of both plant and metal based NPs are playing critical roles to this process. Systematic research of metal based NPs in environmentally relevant concentrations and conditions is needed for the future study.
期刊介绍:
Chemical Speciation & Bioavailability ( CS&B) is a scholarly, peer-reviewed forum for insights on the chemical aspects of occurrence, distribution, transport, transformation, transfer, fate, and effects of substances in the environment and biota, and their impacts on the uptake of the substances by living organisms. Substances of interests include both beneficial and toxic ones, especially nutrients, heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants. It is the aim of this Journal to develop an international community of experienced colleagues to promote the research, discussion, review, and spread of information on chemical speciation and bioavailability, which is a topic of interest to researchers in many disciplines, including environmental, chemical, biological, food, medical, toxicology, and health sciences.
Key themes in the scope of the Journal include, but are not limited to, the following “6Ms”:
Methods for speciation analysis and the evaluation of bioavailability, especially the development, validation, and application of novel methods and techniques.
Media that sustain the processes of release, distribution, transformation, and transfer of chemical speciation; of particular interest are emerging contaminants, such as engineered nanomaterials, pharmaceuticals, and personal-care products.
Mobility of substance species in environment and biota, either spatially or temporally.
Matters that influence the chemical speciation and bioavailability, mainly environmentally relevant conditions.
Mechanisms that govern the transport, transformation, transfer, and fate of chemical speciation in the environment, and the biouptake of substances.
Models for the simulation of chemical speciation and bioavailability, and for the prediction of toxicity.
Chemical Speciation & Bioavailability is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read, anywhere, at any time. immediately on publication. There are no charges for submission to this journal.