D. V. Golubenko, V. R. Malakhova, P. A. Yurova, M. V. Evsiunina, I. A. Stenina
{"title":"磺化条件对γ辐照聚偏氟乙烯膜接枝聚苯乙烯离子导电膜性能的影响","authors":"D. V. Golubenko, V. R. Malakhova, P. A. Yurova, M. V. Evsiunina, I. A. Stenina","doi":"10.1134/S2517751622040035","DOIUrl":null,"url":null,"abstract":"<p>The process of heterogeneous sulfonation of a radiation-grafted copolymer of polystyrene and polyvinylidene fluoride depending on the reaction time and the type of sulfonating agent (chlorosulfonic acid or its equimolar mixture with acetic acid) has been studied. The water uptake, ion-exchange capacity, and ionic conductivity of the prepared membranes have been characterized. In addition, composition and morphology of materials at different synthesis stages have been analyzed by FTIR, <sup>1</sup>Н NMR, and EPR spectroscopies, elemental analysis, and scanning electron microscopy combined with energy dispersive X-ray microanalysis. The ionic conductivity of the prepared materials exceeds that of Nafion®212 membranes. In addition, the mechanical properties and hydrogen gas permeability of the membrane with the highest ionic conductivity (52 mS/cm at 80°C in contact with water) are better than those of the Nafion®212 membrane.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"4 4","pages":"267 - 275"},"PeriodicalIF":2.0000,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S2517751622040035.pdf","citationCount":"2","resultStr":"{\"title\":\"Effect of Sulfonation Conditions on Properties of Ion-Conducting Membranes Based on Polystyrene Grafted on Gamma-Irradiated Polyvinylidene Fluoride Films\",\"authors\":\"D. V. Golubenko, V. R. Malakhova, P. A. Yurova, M. V. Evsiunina, I. A. Stenina\",\"doi\":\"10.1134/S2517751622040035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The process of heterogeneous sulfonation of a radiation-grafted copolymer of polystyrene and polyvinylidene fluoride depending on the reaction time and the type of sulfonating agent (chlorosulfonic acid or its equimolar mixture with acetic acid) has been studied. The water uptake, ion-exchange capacity, and ionic conductivity of the prepared membranes have been characterized. In addition, composition and morphology of materials at different synthesis stages have been analyzed by FTIR, <sup>1</sup>Н NMR, and EPR spectroscopies, elemental analysis, and scanning electron microscopy combined with energy dispersive X-ray microanalysis. The ionic conductivity of the prepared materials exceeds that of Nafion®212 membranes. In addition, the mechanical properties and hydrogen gas permeability of the membrane with the highest ionic conductivity (52 mS/cm at 80°C in contact with water) are better than those of the Nafion®212 membrane.</p>\",\"PeriodicalId\":700,\"journal\":{\"name\":\"Membranes and Membrane Technologies\",\"volume\":\"4 4\",\"pages\":\"267 - 275\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S2517751622040035.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes and Membrane Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2517751622040035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751622040035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of Sulfonation Conditions on Properties of Ion-Conducting Membranes Based on Polystyrene Grafted on Gamma-Irradiated Polyvinylidene Fluoride Films
The process of heterogeneous sulfonation of a radiation-grafted copolymer of polystyrene and polyvinylidene fluoride depending on the reaction time and the type of sulfonating agent (chlorosulfonic acid or its equimolar mixture with acetic acid) has been studied. The water uptake, ion-exchange capacity, and ionic conductivity of the prepared membranes have been characterized. In addition, composition and morphology of materials at different synthesis stages have been analyzed by FTIR, 1Н NMR, and EPR spectroscopies, elemental analysis, and scanning electron microscopy combined with energy dispersive X-ray microanalysis. The ionic conductivity of the prepared materials exceeds that of Nafion®212 membranes. In addition, the mechanical properties and hydrogen gas permeability of the membrane with the highest ionic conductivity (52 mS/cm at 80°C in contact with water) are better than those of the Nafion®212 membrane.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.