用红外处理一种聚合物形成多层膜

IF 2 Q4 CHEMISTRY, PHYSICAL Membranes and Membrane Technologies Pub Date : 2022-08-14 DOI:10.1134/S2517751622040114
A. A. Yushkin, A. V. Balynin, M. N. Efimov, D. G. Muratov, G. P. Karpacheva, A. V. Volkov
{"title":"用红外处理一种聚合物形成多层膜","authors":"A. A. Yushkin,&nbsp;A. V. Balynin,&nbsp;M. N. Efimov,&nbsp;D. G. Muratov,&nbsp;G. P. Karpacheva,&nbsp;A. V. Volkov","doi":"10.1134/S2517751622040114","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a new method of layer-by-layer formation of monopolymer membranes based on polyacrylonitrile (PAN) is proposed. The proposed approach allows independent adjustment of the structure and characteristics of individual layers of the membrane to achieve high performance characteristics. IR radiation has been used to modify PAN, the effect of which has allowed to convert the polymer into an insoluble form for the application of subsequent layers. An important feature of IR modification is that the pore size and permeability of the membranes remain unchanged. This makes it possible to form the individual membrane layers under different conditions. The obtained membranes have a well-defined spongy layer on the surface and finger-like pores in the other part of the membrane volume. The presence of the spongy layer on the surface reduces the probability of formation of undesirable defects, which reduce the membrane retention. As a result, defect-free membranes that combine a low molecular weight of MWCO cut-off equal to 1800 g/mol and a fairly good for such a dense membrane permeability of 38.7 L/m<sup>2</sup> h atm have been obtained. The pore size of the obtained membranes is 3.7 nm.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"4 4","pages":"251 - 257"},"PeriodicalIF":2.0000,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Formation of Multilayer Membranes from One Polymer Using IR Treatment\",\"authors\":\"A. A. Yushkin,&nbsp;A. V. Balynin,&nbsp;M. N. Efimov,&nbsp;D. G. Muratov,&nbsp;G. P. Karpacheva,&nbsp;A. V. Volkov\",\"doi\":\"10.1134/S2517751622040114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a new method of layer-by-layer formation of monopolymer membranes based on polyacrylonitrile (PAN) is proposed. The proposed approach allows independent adjustment of the structure and characteristics of individual layers of the membrane to achieve high performance characteristics. IR radiation has been used to modify PAN, the effect of which has allowed to convert the polymer into an insoluble form for the application of subsequent layers. An important feature of IR modification is that the pore size and permeability of the membranes remain unchanged. This makes it possible to form the individual membrane layers under different conditions. The obtained membranes have a well-defined spongy layer on the surface and finger-like pores in the other part of the membrane volume. The presence of the spongy layer on the surface reduces the probability of formation of undesirable defects, which reduce the membrane retention. As a result, defect-free membranes that combine a low molecular weight of MWCO cut-off equal to 1800 g/mol and a fairly good for such a dense membrane permeability of 38.7 L/m<sup>2</sup> h atm have been obtained. The pore size of the obtained membranes is 3.7 nm.</p>\",\"PeriodicalId\":700,\"journal\":{\"name\":\"Membranes and Membrane Technologies\",\"volume\":\"4 4\",\"pages\":\"251 - 257\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes and Membrane Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2517751622040114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751622040114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种以聚丙烯腈(PAN)为基材,逐层制备单聚膜的新方法。所提出的方法允许独立调整膜的各个层的结构和特性,以实现高性能特性。红外辐射已被用于改性PAN,其效果已允许将聚合物转化为不溶形式,用于后续层的应用。红外改性的一个重要特点是膜的孔径和通透性保持不变。这使得在不同条件下形成单独的膜层成为可能。所制得的膜表面有明确的海绵状层,膜体积的另一部分有指状孔。表面海绵状层的存在减少了形成不良缺陷的可能性,从而减少了膜潴留。结果,获得了MWCO截止分子量为1800 g/mol的低分子量无缺陷膜,并获得了相当好的致密膜渗透率38.7 L/m2 h / atm。所得膜的孔径为3.7 nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formation of Multilayer Membranes from One Polymer Using IR Treatment

In this paper, a new method of layer-by-layer formation of monopolymer membranes based on polyacrylonitrile (PAN) is proposed. The proposed approach allows independent adjustment of the structure and characteristics of individual layers of the membrane to achieve high performance characteristics. IR radiation has been used to modify PAN, the effect of which has allowed to convert the polymer into an insoluble form for the application of subsequent layers. An important feature of IR modification is that the pore size and permeability of the membranes remain unchanged. This makes it possible to form the individual membrane layers under different conditions. The obtained membranes have a well-defined spongy layer on the surface and finger-like pores in the other part of the membrane volume. The presence of the spongy layer on the surface reduces the probability of formation of undesirable defects, which reduce the membrane retention. As a result, defect-free membranes that combine a low molecular weight of MWCO cut-off equal to 1800 g/mol and a fairly good for such a dense membrane permeability of 38.7 L/m2 h atm have been obtained. The pore size of the obtained membranes is 3.7 nm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
31.20%
发文量
38
期刊介绍: The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.
期刊最新文献
Comparison of Homogeneous Anion-Exchange Membrane Based on Copolymer of N,N-Diallyl-N,N-dimethylammonium Chloride and Commercial Anion-Exchange Membranes in Electrodialysis Processing of Dilute Sodium Chloride Solutions Concentration Polarization in Membrane Systems Effect of Nature and Charge of Counterions and Co-Ions on Electrotransport Properties of Heterogeneous Anion Exchange Membranes Characterization of New Experimental Materials for Hemodialysis Membranes and Simulation of Urea Dialysis Process with Their Use Selective Extraction of Lithium Cations from Mixture of Alkali Metal Chlorides Using Electrobaromembrane Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1