在一阶核中new - west是最优的吗?

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-03-01 DOI:10.1016/j.jeconom.2022.12.013
Thomas Kolokotrones , James H. Stock , Christopher D. Walker
{"title":"在一阶核中new - west是最优的吗?","authors":"Thomas Kolokotrones ,&nbsp;James H. Stock ,&nbsp;Christopher D. Walker","doi":"10.1016/j.jeconom.2022.12.013","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Newey–West (1987) standard errors are the dominant standard errors used for heteroskedasticity and autocorrelation robust (HAR) inference in </span>time series<span> regression. The Newey–West estimator uses the Bartlett kernel, which is a first-order kernel, meaning that its characteristic exponent, </span></span><span><math><mi>q</mi></math></span>, is equal to 1, where <span><math><mi>q</mi></math></span> is defined as the largest value of <span><math><mi>r</mi></math></span> for which the quantity <span><math><mrow><msup><mrow><mi>k</mi></mrow><mrow><mrow><mo>[</mo><mi>r</mi><mo>]</mo></mrow></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>t</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>k</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>−</mo><mi>k</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> is defined and finite. This raises the apparently uninvestigated question of whether the Bartlett kernel is optimal among first-order kernels. We demonstrate that, for <span><math><mrow><mi>q</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span>, there is no optimal <span><math><mi>q</mi></math></span><span>th-order kernel for HAR testing in the Gaussian<span><span> location model or for minimizing the MSE in </span>spectral density estimation. In fact, for any </span></span><span><math><mrow><mi>q</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span>, the space of <span><math><mi>q</mi></math></span>th-order positive-semidefinite kernels is not closed and, moreover, all continuous <span><math><mi>q</mi></math></span>th-order kernels can be decomposed into a weighted sum of <span><math><mi>q</mi></math></span>th and second-order kernels, which suggests that there is no meaningful notion of ‘pure’ <span><math><mi>q</mi></math></span>th-order kernels for <span><math><mrow><mi>q</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span>. Nevertheless, it is possible to rank any given collection of <span><math><mi>q</mi></math></span>th-order kernels using the functional <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow><mo>=</mo><msup><mrow><mfenced><mrow><msup><mrow><mi>k</mi></mrow><mrow><mrow><mo>[</mo><mi>q</mi><mo>]</mo></mrow></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mi>q</mi></mrow></msup><mo>∫</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>d</mi><mi>t</mi></mrow></math></span> with smaller values corresponding to better asymptotic performance. We examine the value of <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></mrow></math></span> for a wide variety of first-order estimators and find that none improve upon the Bartlett kernel. These comparisons provide additional justification for the continued use of the Newey–West estimator with testing-optimal smoothing parameters and fixed-<span><math><mi>b</mi></math></span><span> critical values despite the lack of optimality of Bartlett among first-order kernels.</span></p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105399"},"PeriodicalIF":9.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is Newey–West optimal among first-order kernels?\",\"authors\":\"Thomas Kolokotrones ,&nbsp;James H. Stock ,&nbsp;Christopher D. Walker\",\"doi\":\"10.1016/j.jeconom.2022.12.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Newey–West (1987) standard errors are the dominant standard errors used for heteroskedasticity and autocorrelation robust (HAR) inference in </span>time series<span> regression. The Newey–West estimator uses the Bartlett kernel, which is a first-order kernel, meaning that its characteristic exponent, </span></span><span><math><mi>q</mi></math></span>, is equal to 1, where <span><math><mi>q</mi></math></span> is defined as the largest value of <span><math><mi>r</mi></math></span> for which the quantity <span><math><mrow><msup><mrow><mi>k</mi></mrow><mrow><mrow><mo>[</mo><mi>r</mi><mo>]</mo></mrow></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>t</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>k</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>−</mo><mi>k</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> is defined and finite. This raises the apparently uninvestigated question of whether the Bartlett kernel is optimal among first-order kernels. We demonstrate that, for <span><math><mrow><mi>q</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span>, there is no optimal <span><math><mi>q</mi></math></span><span>th-order kernel for HAR testing in the Gaussian<span><span> location model or for minimizing the MSE in </span>spectral density estimation. In fact, for any </span></span><span><math><mrow><mi>q</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span>, the space of <span><math><mi>q</mi></math></span>th-order positive-semidefinite kernels is not closed and, moreover, all continuous <span><math><mi>q</mi></math></span>th-order kernels can be decomposed into a weighted sum of <span><math><mi>q</mi></math></span>th and second-order kernels, which suggests that there is no meaningful notion of ‘pure’ <span><math><mi>q</mi></math></span>th-order kernels for <span><math><mrow><mi>q</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span>. Nevertheless, it is possible to rank any given collection of <span><math><mi>q</mi></math></span>th-order kernels using the functional <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow><mo>=</mo><msup><mrow><mfenced><mrow><msup><mrow><mi>k</mi></mrow><mrow><mrow><mo>[</mo><mi>q</mi><mo>]</mo></mrow></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mi>q</mi></mrow></msup><mo>∫</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>d</mi><mi>t</mi></mrow></math></span> with smaller values corresponding to better asymptotic performance. We examine the value of <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></mrow></math></span> for a wide variety of first-order estimators and find that none improve upon the Bartlett kernel. These comparisons provide additional justification for the continued use of the Newey–West estimator with testing-optimal smoothing parameters and fixed-<span><math><mi>b</mi></math></span><span> critical values despite the lack of optimality of Bartlett among first-order kernels.</span></p></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"240 2\",\"pages\":\"Article 105399\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407623000301\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407623000301","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

Newey-West (1987) 标准误差是时间序列回归中用于异方差和自相关稳健(HAR)推断的主要标准误差。Newey-West 估计器使用的是巴特利特核,这是一个一阶核,意味着其特征指数 q 等于 1,其中 q 被定义为 k[r](0)=limt→0|t|-r(k(0)-k(t)) 所定义的最大 r 值,并且是有限的。这就提出了一个显然尚未研究过的问题:巴特利特核是否是一阶核中的最优核。我们证明,对于 q<2,在高斯位置模型中进行 HAR 检验或在谱密度估计中最小化 MSE 时,不存在最优的 qth 阶核。事实上,对于任何 q<2,qth-阶正半定常核的空间都不是封闭的,而且,所有连续的 qth-阶核都可以分解为 qth 和 second-阶核的加权和,这表明对于 q<2,不存在有意义的 "纯 "qth-阶核的概念。不过,可以使用函数 Iq[k]=k[q](0)1/q∫k2(t)dt 对任何给定的 qth 阶内核集合进行排序,数值越小,渐近性能越好。我们研究了各种一阶估计值的 Iq[k] 值,发现没有一个估计值比 Bartlett 内核更好。这些比较为继续使用具有测试最优平滑参数和固定临界值的 Newey-West 估计器提供了更多理由,尽管 Bartlett 在一阶核中缺乏最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Is Newey–West optimal among first-order kernels?

Newey–West (1987) standard errors are the dominant standard errors used for heteroskedasticity and autocorrelation robust (HAR) inference in time series regression. The Newey–West estimator uses the Bartlett kernel, which is a first-order kernel, meaning that its characteristic exponent, q, is equal to 1, where q is defined as the largest value of r for which the quantity k[r](0)=limt0|t|r(k(0)k(t)) is defined and finite. This raises the apparently uninvestigated question of whether the Bartlett kernel is optimal among first-order kernels. We demonstrate that, for q<2, there is no optimal qth-order kernel for HAR testing in the Gaussian location model or for minimizing the MSE in spectral density estimation. In fact, for any q<2, the space of qth-order positive-semidefinite kernels is not closed and, moreover, all continuous qth-order kernels can be decomposed into a weighted sum of qth and second-order kernels, which suggests that there is no meaningful notion of ‘pure’ qth-order kernels for q<2. Nevertheless, it is possible to rank any given collection of qth-order kernels using the functional Iq[k]=k[q](0)1/qk2(t)dt with smaller values corresponding to better asymptotic performance. We examine the value of Iq[k] for a wide variety of first-order estimators and find that none improve upon the Bartlett kernel. These comparisons provide additional justification for the continued use of the Newey–West estimator with testing-optimal smoothing parameters and fixed-b critical values despite the lack of optimality of Bartlett among first-order kernels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Inference in cluster randomized trials with matched pairs Why are replication rates so low? On the spectral density of fractional Ornstein–Uhlenbeck processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1