{"title":"利用流域出口速度确定流域集中时间和蓄水系数","authors":"Jinwook Lee, C. Yoo","doi":"10.2166/nh.2022.066","DOIUrl":null,"url":null,"abstract":"\n Most empirical formulae for the basin concentration time (Tc) and storage coefficient (K) focus on estimating the representative values under the ordinary condition, with their return period being a maximum of 100–200 years. Under more extreme conditions, those parameters should be modified to consider faster velocity conditions. The main objective of this study is to examine the possibility of determining these parameters corresponding to the given peak velocity (vp) at the basin outlet. Two issues are involved in this problem; one is whether Tc can be fully expressed by vp, while the other is whether K is still linearly proportional to Tc under extreme conditions. In this study, these two issues are resolved by the theoretical review of these parameters, as well as an analysis of the rainfall–runoff events collected at the Chungju Dam basin, Korea. It is observed that as vp increases, Tc and K decrease. Their relationship is close to inverse but in linear proportion. That is, strong linear relationships are found among Tc, K, and vp. As a result, the ratio of K to Tc is found to be almost identical, regardless of vp. This ratio at a basin can be assumed as a basin characteristic that is unchanged, regardless of the size of rainfall events.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of basin outlet velocity to determine the basin concentration time and storage coefficient\",\"authors\":\"Jinwook Lee, C. Yoo\",\"doi\":\"10.2166/nh.2022.066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Most empirical formulae for the basin concentration time (Tc) and storage coefficient (K) focus on estimating the representative values under the ordinary condition, with their return period being a maximum of 100–200 years. Under more extreme conditions, those parameters should be modified to consider faster velocity conditions. The main objective of this study is to examine the possibility of determining these parameters corresponding to the given peak velocity (vp) at the basin outlet. Two issues are involved in this problem; one is whether Tc can be fully expressed by vp, while the other is whether K is still linearly proportional to Tc under extreme conditions. In this study, these two issues are resolved by the theoretical review of these parameters, as well as an analysis of the rainfall–runoff events collected at the Chungju Dam basin, Korea. It is observed that as vp increases, Tc and K decrease. Their relationship is close to inverse but in linear proportion. That is, strong linear relationships are found among Tc, K, and vp. As a result, the ratio of K to Tc is found to be almost identical, regardless of vp. This ratio at a basin can be assumed as a basin characteristic that is unchanged, regardless of the size of rainfall events.\",\"PeriodicalId\":55040,\"journal\":{\"name\":\"Hydrology Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/nh.2022.066\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2022.066","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Use of basin outlet velocity to determine the basin concentration time and storage coefficient
Most empirical formulae for the basin concentration time (Tc) and storage coefficient (K) focus on estimating the representative values under the ordinary condition, with their return period being a maximum of 100–200 years. Under more extreme conditions, those parameters should be modified to consider faster velocity conditions. The main objective of this study is to examine the possibility of determining these parameters corresponding to the given peak velocity (vp) at the basin outlet. Two issues are involved in this problem; one is whether Tc can be fully expressed by vp, while the other is whether K is still linearly proportional to Tc under extreme conditions. In this study, these two issues are resolved by the theoretical review of these parameters, as well as an analysis of the rainfall–runoff events collected at the Chungju Dam basin, Korea. It is observed that as vp increases, Tc and K decrease. Their relationship is close to inverse but in linear proportion. That is, strong linear relationships are found among Tc, K, and vp. As a result, the ratio of K to Tc is found to be almost identical, regardless of vp. This ratio at a basin can be assumed as a basin characteristic that is unchanged, regardless of the size of rainfall events.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.