{"title":"超导铌钛:可负担的核磁共振成像和寻找希格斯玻色子的推动者","authors":"T. G. Berlincourt","doi":"10.1007/s00016-015-0172-x","DOIUrl":null,"url":null,"abstract":"<p>In 1961, Bell Telephone Laboratories researchers startled the world of physics by reporting that, at temperatures near absolute zero, a superconducting niobium-tin compound could support enormous electric current densities without resistance in the presence of very high magnetic fields. Suddenly, it became possible to fabricate supermagnets that generate high magnetic fields with unprecedented efficiency and economy. Scientists raced to find additional such materials and also to account theoretically for their behavior. Disregarded early on as unpromising, niobium-titanium alloys eventually emerged from among thousands of superconductors to become the most widely used, finding application in many thousands of MRI medical imaging systems and in huge particle accelerator magnets. In 1962, at Atomics International, experiments that revealed the supermagnet promise of niobium-titanium alloys also made essential contributions to the confirmation of the initially overlooked superconductivity theories of Soviet scientists Ginzburg, Landau, Abrikosov, and Gor'kov as the appropriate framework for understanding the physics of high magnetic field superconductivity.</p>","PeriodicalId":727,"journal":{"name":"Physics in Perspective","volume":"17 4","pages":"334 - 353"},"PeriodicalIF":0.1000,"publicationDate":"2015-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00016-015-0172-x","citationCount":"2","resultStr":"{\"title\":\"Superconducting Niobium-Titanium: Enabler for Affordable MRI and the Search for the Higgs Boson\",\"authors\":\"T. G. Berlincourt\",\"doi\":\"10.1007/s00016-015-0172-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 1961, Bell Telephone Laboratories researchers startled the world of physics by reporting that, at temperatures near absolute zero, a superconducting niobium-tin compound could support enormous electric current densities without resistance in the presence of very high magnetic fields. Suddenly, it became possible to fabricate supermagnets that generate high magnetic fields with unprecedented efficiency and economy. Scientists raced to find additional such materials and also to account theoretically for their behavior. Disregarded early on as unpromising, niobium-titanium alloys eventually emerged from among thousands of superconductors to become the most widely used, finding application in many thousands of MRI medical imaging systems and in huge particle accelerator magnets. In 1962, at Atomics International, experiments that revealed the supermagnet promise of niobium-titanium alloys also made essential contributions to the confirmation of the initially overlooked superconductivity theories of Soviet scientists Ginzburg, Landau, Abrikosov, and Gor'kov as the appropriate framework for understanding the physics of high magnetic field superconductivity.</p>\",\"PeriodicalId\":727,\"journal\":{\"name\":\"Physics in Perspective\",\"volume\":\"17 4\",\"pages\":\"334 - 353\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2015-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00016-015-0172-x\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in Perspective\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00016-015-0172-x\",\"RegionNum\":3,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in Perspective","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s00016-015-0172-x","RegionNum":3,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
Superconducting Niobium-Titanium: Enabler for Affordable MRI and the Search for the Higgs Boson
In 1961, Bell Telephone Laboratories researchers startled the world of physics by reporting that, at temperatures near absolute zero, a superconducting niobium-tin compound could support enormous electric current densities without resistance in the presence of very high magnetic fields. Suddenly, it became possible to fabricate supermagnets that generate high magnetic fields with unprecedented efficiency and economy. Scientists raced to find additional such materials and also to account theoretically for their behavior. Disregarded early on as unpromising, niobium-titanium alloys eventually emerged from among thousands of superconductors to become the most widely used, finding application in many thousands of MRI medical imaging systems and in huge particle accelerator magnets. In 1962, at Atomics International, experiments that revealed the supermagnet promise of niobium-titanium alloys also made essential contributions to the confirmation of the initially overlooked superconductivity theories of Soviet scientists Ginzburg, Landau, Abrikosov, and Gor'kov as the appropriate framework for understanding the physics of high magnetic field superconductivity.
期刊介绍:
Physics in Perspective seeks to bridge the gulf between physicists and non-physicists through historical and philosophical studies that typically display the unpredictable as well as the cross-disciplinary interplay of observation, experiment, and theory that has occurred over extended periods of time in academic, governmental, and industrial settings and in allied disciplines such as astrophysics, chemical physics, and geophysics. The journal also publishes first-person accounts by physicists of significant contributions they have made, biographical articles, book reviews, and guided tours of historical sites in cities throughout the world. It strives to make all articles understandable to a broad spectrum of readers – scientists, teachers, students, and the public at large. Bibliographic Data Phys. Perspect. 1 volume per year, 4 issues per volume approx. 500 pages per volume Format: 15.5 x 23.5cm ISSN 1422-6944 (print) ISSN 1422-6960 (electronic)