Argo温度数据质量控制的机器学习方法

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric and Oceanic Science Letters Pub Date : 2023-07-01 DOI:10.1016/j.aosl.2022.100292
Qi Zhang , Chenyan Qian , Changming Dong
{"title":"Argo温度数据质量控制的机器学习方法","authors":"Qi Zhang ,&nbsp;Chenyan Qian ,&nbsp;Changming Dong","doi":"10.1016/j.aosl.2022.100292","DOIUrl":null,"url":null,"abstract":"<div><p>A machine learning approach is proposed to identify temperature outliers from Argo float profiles as a complementary procedure to current Argo quality control. A machine learning unsupervised classification (i.e., the Gaussian mixture model, GMM) is applied to cluster the Argo data into classes to construct convex hulls with the smallest polygons encompassing all the data points. Good or bad temperature data are identified as within or outside the polygons based on point-in-polygon analysis implemented by the ray casting algorithm. The South China Sea was selected as an example and results showed that the proposed approach could identify more than 70% of the profiles containing the outliers and mark the outliers automatically at the same time. This highlights the potential of the proposed methodology to be a good complementary quality control method.</p><p>摘要</p><p>本文提出了一种基于机器学习的Argo浮标温度异常值检测方法. 该方法采用机器学习无监督算法高斯混合模型对Argo浮标数据进行聚类分析, 并构建包围所有数据点的最小多边形的凸包. 基于射线投影算法实现点在多边形内分析, 通过自动识别数据点位于凸包内外来判断该数据点数据质量的好坏. 本文采用南海区域Argo浮标数据对该方法进行测试, 结果表明该方法可以识别70%以上的包含异常值的温度剖面, 同时自动标记出各异常值点.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 4","pages":"Article 100292"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A machine learning approach to quality-control Argo temperature data\",\"authors\":\"Qi Zhang ,&nbsp;Chenyan Qian ,&nbsp;Changming Dong\",\"doi\":\"10.1016/j.aosl.2022.100292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A machine learning approach is proposed to identify temperature outliers from Argo float profiles as a complementary procedure to current Argo quality control. A machine learning unsupervised classification (i.e., the Gaussian mixture model, GMM) is applied to cluster the Argo data into classes to construct convex hulls with the smallest polygons encompassing all the data points. Good or bad temperature data are identified as within or outside the polygons based on point-in-polygon analysis implemented by the ray casting algorithm. The South China Sea was selected as an example and results showed that the proposed approach could identify more than 70% of the profiles containing the outliers and mark the outliers automatically at the same time. This highlights the potential of the proposed methodology to be a good complementary quality control method.</p><p>摘要</p><p>本文提出了一种基于机器学习的Argo浮标温度异常值检测方法. 该方法采用机器学习无监督算法高斯混合模型对Argo浮标数据进行聚类分析, 并构建包围所有数据点的最小多边形的凸包. 基于射线投影算法实现点在多边形内分析, 通过自动识别数据点位于凸包内外来判断该数据点数据质量的好坏. 本文采用南海区域Argo浮标数据对该方法进行测试, 结果表明该方法可以识别70%以上的包含异常值的温度剖面, 同时自动标记出各异常值点.</p></div>\",\"PeriodicalId\":47210,\"journal\":{\"name\":\"Atmospheric and Oceanic Science Letters\",\"volume\":\"16 4\",\"pages\":\"Article 100292\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674283422001751\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283422001751","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 3

摘要

A machine learning approach is proposed to identify temperature outliers from Argo float profiles as a complementary procedure to current Argo quality control. A machine learning unsupervised classification (i.e., the Gaussian mixture model, GMM) is applied to cluster the Argo data into classes to construct convex hulls with the smallest polygons encompassing all the data points. Good or bad temperature data are identified as within or outside the polygons based on point-in-polygon analysis implemented by the ray casting algorithm. The South China Sea was selected as an example and results showed that the proposed approach could identify more than 70% of the profiles containing the outliers and mark the outliers automatically at the same time. This highlights the potential of the proposed methodology to be a good complementary quality control method.摘要本文提出了一种基于机器学习的Argo浮标温度异常值检测方法. 该方法采用机器学习无监督算法高斯混合模型对Argo浮标数据进行聚类分析, 并构建包围所有数据点的最小多边形的凸包. 基于射线投影算法实现点在多边形内分析, 通过自动识别数据点位于凸包内外来判断该数据点数据质量的好坏. 本文采用南海区域Argo浮标数据对该方法进行测试, 结果表明该方法可以识别70%以上的包含异常值的温度剖面, 同时自动标记出各异常值点.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A machine learning approach to quality-control Argo temperature data

A machine learning approach is proposed to identify temperature outliers from Argo float profiles as a complementary procedure to current Argo quality control. A machine learning unsupervised classification (i.e., the Gaussian mixture model, GMM) is applied to cluster the Argo data into classes to construct convex hulls with the smallest polygons encompassing all the data points. Good or bad temperature data are identified as within or outside the polygons based on point-in-polygon analysis implemented by the ray casting algorithm. The South China Sea was selected as an example and results showed that the proposed approach could identify more than 70% of the profiles containing the outliers and mark the outliers automatically at the same time. This highlights the potential of the proposed methodology to be a good complementary quality control method.

摘要

本文提出了一种基于机器学习的Argo浮标温度异常值检测方法. 该方法采用机器学习无监督算法高斯混合模型对Argo浮标数据进行聚类分析, 并构建包围所有数据点的最小多边形的凸包. 基于射线投影算法实现点在多边形内分析, 通过自动识别数据点位于凸包内外来判断该数据点数据质量的好坏. 本文采用南海区域Argo浮标数据对该方法进行测试, 结果表明该方法可以识别70%以上的包含异常值的温度剖面, 同时自动标记出各异常值点.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
期刊最新文献
Implications of the extremely hot summer of 2022 on urban ozone control in China Impacts of global biogenic isoprene emissions on surface ozone during 2000–2019 Enhanced nitrous acid (HONO) formation via NO2 uptake and its potential contribution to heavy haze formation during wintertime A portable instrument for measurement of atmospheric Ox and NO2 based on cavity ring-down spectroscopy Vertical distributions of VOCs in the Tibetan Plateau background region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1