鞣花酸- Fe@BSA纳米颗粒在A549细胞中的优先有效载荷传递和化学动力学治疗

Q3 Agricultural and Biological Sciences Journal of Applied Biology and Biotechnology Pub Date : 2021-11-10 DOI:10.7324/jabb.2021.96018
S. Menon, S. Venkatabalasubramanian
{"title":"鞣花酸- Fe@BSA纳米颗粒在A549细胞中的优先有效载荷传递和化学动力学治疗","authors":"S. Menon, S. Venkatabalasubramanian","doi":"10.7324/jabb.2021.96018","DOIUrl":null,"url":null,"abstract":"Recent advances in nanomedicine hail chemodynamic therapy (CDT), based on the Fe (II)-mediated Fenton reaction, as a forthcoming, potentially revolutionary, and tumor mediation strategy. Various experiments have proven the therapeutic effects of CDT in vivo as well as in diverse tumor cell lines, but most processes lack significant targeting among other hurdles, viz., the optimization of physical parameters (i.e., aggregation, organic carriers, conjugates etc.). Briefly, Fe (III) in the form of FeCl3 was conjugated with bovine serum albumin nanoparticles (NP) in order to derive a novel in vitro nano-therapeutic system against A549 cells by a chemical synthesis approach. A naturally occurring anti-tumor agent ellagic acid was conjugated to the NPs to improve their therapeutic effect and test for the anticipated increase in bioavailability and cytotoxicity of the drug. The NP system was sufficiently characterized using dynamic light scattering, UV-vis spectroscopy, and Fourier transform infrared spectroscopy analysis and cell viability was examined using an (3-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide) assay. The results demonstrate the NP system to be within range of proper nano-delivery mechanism and cytotoxicity examinations reveal the novel drug and CDT combination to be greatly effective in reducing tumor cell proliferation, holding great promise in being extrapolated to in vivo model systems for further analysis.","PeriodicalId":15032,"journal":{"name":"Journal of Applied Biology and Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ellagic acid—Fe@BSA nanoparticles for preferential payload delivery and chemodynamic therapy in A549 cells\",\"authors\":\"S. Menon, S. Venkatabalasubramanian\",\"doi\":\"10.7324/jabb.2021.96018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in nanomedicine hail chemodynamic therapy (CDT), based on the Fe (II)-mediated Fenton reaction, as a forthcoming, potentially revolutionary, and tumor mediation strategy. Various experiments have proven the therapeutic effects of CDT in vivo as well as in diverse tumor cell lines, but most processes lack significant targeting among other hurdles, viz., the optimization of physical parameters (i.e., aggregation, organic carriers, conjugates etc.). Briefly, Fe (III) in the form of FeCl3 was conjugated with bovine serum albumin nanoparticles (NP) in order to derive a novel in vitro nano-therapeutic system against A549 cells by a chemical synthesis approach. A naturally occurring anti-tumor agent ellagic acid was conjugated to the NPs to improve their therapeutic effect and test for the anticipated increase in bioavailability and cytotoxicity of the drug. The NP system was sufficiently characterized using dynamic light scattering, UV-vis spectroscopy, and Fourier transform infrared spectroscopy analysis and cell viability was examined using an (3-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide) assay. The results demonstrate the NP system to be within range of proper nano-delivery mechanism and cytotoxicity examinations reveal the novel drug and CDT combination to be greatly effective in reducing tumor cell proliferation, holding great promise in being extrapolated to in vivo model systems for further analysis.\",\"PeriodicalId\":15032,\"journal\":{\"name\":\"Journal of Applied Biology and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7324/jabb.2021.96018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7324/jabb.2021.96018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

纳米医学的最新进展称赞基于Fe(II)介导的芬顿反应的化学动力学治疗(CDT)是一种即将到来的、潜在的革命性的肿瘤介导策略。各种实验已经证明了CDT在体内和不同肿瘤细胞系中的治疗效果,但大多数过程缺乏显著的靶向性和其他障碍,即物理参数(即聚集、有机载体、偶联物等)的优化。简言之,将FeCl3形式的Fe(III)与牛血清白蛋白纳米颗粒(NP)偶联,以通过化学合成方法获得针对A549细胞的新型体外纳米治疗系统。将天然存在的抗肿瘤剂鞣花酸与NP偶联,以提高其治疗效果,并测试药物的生物利用度和细胞毒性的预期增加。使用动态光散射、UV-vis光谱和傅里叶变换红外光谱分析对NP系统进行了充分表征,并使用(3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四唑啉)测定法检测细胞活力。结果表明,NP系统在适当的纳米递送机制范围内,细胞毒性检查显示,新药和CDT组合在减少肿瘤细胞增殖方面非常有效,有望推广到体内模型系统中进行进一步分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ellagic acid—Fe@BSA nanoparticles for preferential payload delivery and chemodynamic therapy in A549 cells
Recent advances in nanomedicine hail chemodynamic therapy (CDT), based on the Fe (II)-mediated Fenton reaction, as a forthcoming, potentially revolutionary, and tumor mediation strategy. Various experiments have proven the therapeutic effects of CDT in vivo as well as in diverse tumor cell lines, but most processes lack significant targeting among other hurdles, viz., the optimization of physical parameters (i.e., aggregation, organic carriers, conjugates etc.). Briefly, Fe (III) in the form of FeCl3 was conjugated with bovine serum albumin nanoparticles (NP) in order to derive a novel in vitro nano-therapeutic system against A549 cells by a chemical synthesis approach. A naturally occurring anti-tumor agent ellagic acid was conjugated to the NPs to improve their therapeutic effect and test for the anticipated increase in bioavailability and cytotoxicity of the drug. The NP system was sufficiently characterized using dynamic light scattering, UV-vis spectroscopy, and Fourier transform infrared spectroscopy analysis and cell viability was examined using an (3-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide) assay. The results demonstrate the NP system to be within range of proper nano-delivery mechanism and cytotoxicity examinations reveal the novel drug and CDT combination to be greatly effective in reducing tumor cell proliferation, holding great promise in being extrapolated to in vivo model systems for further analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biology and Biotechnology
Journal of Applied Biology and Biotechnology Agricultural and Biological Sciences-Food Science
CiteScore
1.80
自引率
0.00%
发文量
181
期刊最新文献
Characterization and comparative assessment of bactericidal activity of carbon nanodots (CDs) and nanoparticles (CNPs) prepared from soot's of clarified butter and mustard oil, respectively Screening and isolation of potential nitrogen-fixing Enterobacter sp. GG1 from mangrove soil with its accelerated impact on green chili plant (Capsicum frutescens L.) growth amelioration Synthesis of bio-nanofiber from pectin/polyvinyl alcohol for therapeutic application Letter regarding “Elastase and COVID-19 relationship, and potential natural resource as elastase inhibitors: A comprehensive review” Bacillus paralicheniformis (OQ202112) - Mediated biodiesel production using groundnut husk: A sustainable approach for bioenergy generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1