{"title":"boehmite负载CuO催化5-羟甲基糠醛转移加氢制备2,5-双(羟甲基)呋喃的研究","authors":"Zexing Huang, Zhijuan Zeng, Xiaoting Zhu, Wenguang Zhao, Jing Lei, Qiong Xu, Yongjun Yang, Xianxiang Liu","doi":"10.1007/s11705-022-2225-4","DOIUrl":null,"url":null,"abstract":"<div><p>2,5-bis(hydroxymethyl)furan (BHMF) is an important monomer of polyester. Its oxygen-containing rigid ring structure and symmetrical diol functional group establish it as an alternative to petroleum-based monomer with unique advantages for the prodution of the degradable bio-based polyester materials. Herein, we prepared a boehmite-supported copper-oxide catalyst for the selective hydrogenation of 5-hydroxymethylfurfural into BHMF via catalytic transfer hydrogenation (CTH). Further, ethanol successfully replaced conventional high-pressure hydrogen as the hydrogen donor, with up to 96.9% BHMF selectivity achieved under suitable conditions. Through characterization and factor investigations, it was noted that CuO is crucial for high BHMF selectivity. Furthermore, kinetic studies revealed a higher by-product activation energy compared to that of BHMF, which explained the influence of reaction temperature on product distribution. To establish the catalyst structure-activity correlation, a possible mechanism was proposed. The copper-oxide catalyst deactivated following CTH because ethanol reduced the CuO, which consequently decreased the active sites. Finally, calcination of the catalyst in air recovered its activity. These results will have a positive impact on hydrogenation processes in the biomass industry.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 4","pages":"415 - 424"},"PeriodicalIF":4.3000,"publicationDate":"2023-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Boehmite-supported CuO as a catalyst for catalytic transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan\",\"authors\":\"Zexing Huang, Zhijuan Zeng, Xiaoting Zhu, Wenguang Zhao, Jing Lei, Qiong Xu, Yongjun Yang, Xianxiang Liu\",\"doi\":\"10.1007/s11705-022-2225-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>2,5-bis(hydroxymethyl)furan (BHMF) is an important monomer of polyester. Its oxygen-containing rigid ring structure and symmetrical diol functional group establish it as an alternative to petroleum-based monomer with unique advantages for the prodution of the degradable bio-based polyester materials. Herein, we prepared a boehmite-supported copper-oxide catalyst for the selective hydrogenation of 5-hydroxymethylfurfural into BHMF via catalytic transfer hydrogenation (CTH). Further, ethanol successfully replaced conventional high-pressure hydrogen as the hydrogen donor, with up to 96.9% BHMF selectivity achieved under suitable conditions. Through characterization and factor investigations, it was noted that CuO is crucial for high BHMF selectivity. Furthermore, kinetic studies revealed a higher by-product activation energy compared to that of BHMF, which explained the influence of reaction temperature on product distribution. To establish the catalyst structure-activity correlation, a possible mechanism was proposed. The copper-oxide catalyst deactivated following CTH because ethanol reduced the CuO, which consequently decreased the active sites. Finally, calcination of the catalyst in air recovered its activity. These results will have a positive impact on hydrogenation processes in the biomass industry.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"17 4\",\"pages\":\"415 - 424\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-022-2225-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-022-2225-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Boehmite-supported CuO as a catalyst for catalytic transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan
2,5-bis(hydroxymethyl)furan (BHMF) is an important monomer of polyester. Its oxygen-containing rigid ring structure and symmetrical diol functional group establish it as an alternative to petroleum-based monomer with unique advantages for the prodution of the degradable bio-based polyester materials. Herein, we prepared a boehmite-supported copper-oxide catalyst for the selective hydrogenation of 5-hydroxymethylfurfural into BHMF via catalytic transfer hydrogenation (CTH). Further, ethanol successfully replaced conventional high-pressure hydrogen as the hydrogen donor, with up to 96.9% BHMF selectivity achieved under suitable conditions. Through characterization and factor investigations, it was noted that CuO is crucial for high BHMF selectivity. Furthermore, kinetic studies revealed a higher by-product activation energy compared to that of BHMF, which explained the influence of reaction temperature on product distribution. To establish the catalyst structure-activity correlation, a possible mechanism was proposed. The copper-oxide catalyst deactivated following CTH because ethanol reduced the CuO, which consequently decreased the active sites. Finally, calcination of the catalyst in air recovered its activity. These results will have a positive impact on hydrogenation processes in the biomass industry.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.