Bianca-Maria Ţuchiu, Raluca-Ioana Stefan-van Staden, Jacobus Koos Frederick van Staden
{"title":"布洛芬和酮洛芬电化学定量的最新进展——综述。","authors":"Bianca-Maria Ţuchiu, Raluca-Ioana Stefan-van Staden, Jacobus Koos Frederick van Staden","doi":"10.1080/10408347.2022.2050348","DOIUrl":null,"url":null,"abstract":"<p><p>Non-steroidal anti-inflammatory drugs are intensively manufactured, used, and regulated. However, these compounds incur toxic effects on gastrointestinal, cardiovascular, and renal systems when administered in high doses for extended periods. Additionally, once these drugs reach the ecosystems through various pathways, they become environmental contaminants and raise ecological concerns. Traditional detection methods proposed for non-steroidal anti-inflammatory drugs detection encompass certain limitations. In this context, the need for simple, cost-effective, sensitive, and selective detection methods that could improve the quality of analysis led the attention of the scientific community toward electrochemical sensors. The lowest limit of detection of ibuprofen (33.33 × 10<sup>-12 </sup>μmol L<sup>-1</sup>) was recorded for a sensor based on ibuprofen specific aptamer bound with nitrogen-doped graphene quantum dots and gold nanoparticles nanocomposite modified glassy carbon electrode using differential pulse voltammetry, while the lowest limit of detection reported for ketoprofen was 0.11 μmol L<sup>-1</sup> when differential pulse voltammetry was used. This review focuses on the construction, analytical performances, and applicability of electrochemical sensors developed for ibuprofen and ketoprofen determination. This work covers 24 articles published between 2016 and 2022.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recent Trends in Ibuprofen and Ketoprofen Electrochemical Quantification - A Review.\",\"authors\":\"Bianca-Maria Ţuchiu, Raluca-Ioana Stefan-van Staden, Jacobus Koos Frederick van Staden\",\"doi\":\"10.1080/10408347.2022.2050348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-steroidal anti-inflammatory drugs are intensively manufactured, used, and regulated. However, these compounds incur toxic effects on gastrointestinal, cardiovascular, and renal systems when administered in high doses for extended periods. Additionally, once these drugs reach the ecosystems through various pathways, they become environmental contaminants and raise ecological concerns. Traditional detection methods proposed for non-steroidal anti-inflammatory drugs detection encompass certain limitations. In this context, the need for simple, cost-effective, sensitive, and selective detection methods that could improve the quality of analysis led the attention of the scientific community toward electrochemical sensors. The lowest limit of detection of ibuprofen (33.33 × 10<sup>-12 </sup>μmol L<sup>-1</sup>) was recorded for a sensor based on ibuprofen specific aptamer bound with nitrogen-doped graphene quantum dots and gold nanoparticles nanocomposite modified glassy carbon electrode using differential pulse voltammetry, while the lowest limit of detection reported for ketoprofen was 0.11 μmol L<sup>-1</sup> when differential pulse voltammetry was used. This review focuses on the construction, analytical performances, and applicability of electrochemical sensors developed for ibuprofen and ketoprofen determination. This work covers 24 articles published between 2016 and 2022.</p>\",\"PeriodicalId\":10744,\"journal\":{\"name\":\"Critical reviews in analytical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in analytical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/10408347.2022.2050348\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2022.2050348","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Recent Trends in Ibuprofen and Ketoprofen Electrochemical Quantification - A Review.
Non-steroidal anti-inflammatory drugs are intensively manufactured, used, and regulated. However, these compounds incur toxic effects on gastrointestinal, cardiovascular, and renal systems when administered in high doses for extended periods. Additionally, once these drugs reach the ecosystems through various pathways, they become environmental contaminants and raise ecological concerns. Traditional detection methods proposed for non-steroidal anti-inflammatory drugs detection encompass certain limitations. In this context, the need for simple, cost-effective, sensitive, and selective detection methods that could improve the quality of analysis led the attention of the scientific community toward electrochemical sensors. The lowest limit of detection of ibuprofen (33.33 × 10-12 μmol L-1) was recorded for a sensor based on ibuprofen specific aptamer bound with nitrogen-doped graphene quantum dots and gold nanoparticles nanocomposite modified glassy carbon electrode using differential pulse voltammetry, while the lowest limit of detection reported for ketoprofen was 0.11 μmol L-1 when differential pulse voltammetry was used. This review focuses on the construction, analytical performances, and applicability of electrochemical sensors developed for ibuprofen and ketoprofen determination. This work covers 24 articles published between 2016 and 2022.
期刊介绍:
Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area.
This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following:
· chemical analysis;
· instrumentation;
· chemometrics;
· analytical biochemistry;
· medicinal analysis;
· forensics;
· environmental sciences;
· applied physics;
· and material science.