模拟研究的范围界定方法综述,比较统计和机器学习方法对事件时间数据的风险预测

Hayley Smith, Michael Sweeting, Tim Morris, Michael J Crowther
{"title":"模拟研究的范围界定方法综述,比较统计和机器学习方法对事件时间数据的风险预测","authors":"Hayley Smith, Michael Sweeting, Tim Morris, Michael J Crowther","doi":"10.1186/s41512-022-00124-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There is substantial interest in the adaptation and application of so-called machine learning approaches to prognostic modelling of censored time-to-event data. These methods must be compared and evaluated against existing methods in a variety of scenarios to determine their predictive performance. A scoping review of how machine learning methods have been compared to traditional survival models is important to identify the comparisons that have been made and issues where they are lacking, biased towards one approach or misleading.</p><p><strong>Methods: </strong>We conducted a scoping review of research articles published between 1 January 2000 and 2 December 2020 using PubMed. Eligible articles were those that used simulation studies to compare statistical and machine learning methods for risk prediction with a time-to-event outcome in a medical/healthcare setting. We focus on data-generating mechanisms (DGMs), the methods that have been compared, the estimands of the simulation studies, and the performance measures used to evaluate them.</p><p><strong>Results: </strong>A total of ten articles were identified as eligible for the review. Six of the articles evaluated a method that was developed by the authors, four of which were machine learning methods, and the results almost always stated that this developed method's performance was equivalent to or better than the other methods compared. Comparisons were often biased towards the novel approach, with the majority only comparing against a basic Cox proportional hazards model, and in scenarios where it is clear it would not perform well. In many of the articles reviewed, key information was unclear, such as the number of simulation repetitions and how performance measures were calculated.</p><p><strong>Conclusion: </strong>It is vital that method comparisons are unbiased and comprehensive, and this should be the goal even if realising it is difficult. Fully assessing how newly developed methods perform and how they compare to a variety of traditional statistical methods for prognostic modelling is imperative as these methods are already being applied in clinical contexts. Evaluations of the performance and usefulness of recently developed methods for risk prediction should be continued and reporting standards improved as these methods become increasingly popular.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":" ","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161606/pdf/","citationCount":"0","resultStr":"{\"title\":\"A scoping methodological review of simulation studies comparing statistical and machine learning approaches to risk prediction for time-to-event data.\",\"authors\":\"Hayley Smith, Michael Sweeting, Tim Morris, Michael J Crowther\",\"doi\":\"10.1186/s41512-022-00124-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>There is substantial interest in the adaptation and application of so-called machine learning approaches to prognostic modelling of censored time-to-event data. These methods must be compared and evaluated against existing methods in a variety of scenarios to determine their predictive performance. A scoping review of how machine learning methods have been compared to traditional survival models is important to identify the comparisons that have been made and issues where they are lacking, biased towards one approach or misleading.</p><p><strong>Methods: </strong>We conducted a scoping review of research articles published between 1 January 2000 and 2 December 2020 using PubMed. Eligible articles were those that used simulation studies to compare statistical and machine learning methods for risk prediction with a time-to-event outcome in a medical/healthcare setting. We focus on data-generating mechanisms (DGMs), the methods that have been compared, the estimands of the simulation studies, and the performance measures used to evaluate them.</p><p><strong>Results: </strong>A total of ten articles were identified as eligible for the review. Six of the articles evaluated a method that was developed by the authors, four of which were machine learning methods, and the results almost always stated that this developed method's performance was equivalent to or better than the other methods compared. Comparisons were often biased towards the novel approach, with the majority only comparing against a basic Cox proportional hazards model, and in scenarios where it is clear it would not perform well. In many of the articles reviewed, key information was unclear, such as the number of simulation repetitions and how performance measures were calculated.</p><p><strong>Conclusion: </strong>It is vital that method comparisons are unbiased and comprehensive, and this should be the goal even if realising it is difficult. Fully assessing how newly developed methods perform and how they compare to a variety of traditional statistical methods for prognostic modelling is imperative as these methods are already being applied in clinical contexts. Evaluations of the performance and usefulness of recently developed methods for risk prediction should be continued and reporting standards improved as these methods become increasingly popular.</p>\",\"PeriodicalId\":72800,\"journal\":{\"name\":\"Diagnostic and prognostic research\",\"volume\":\" \",\"pages\":\"10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161606/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic and prognostic research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41512-022-00124-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and prognostic research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41512-022-00124-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A scoping methodological review of simulation studies comparing statistical and machine learning approaches to risk prediction for time-to-event data.

Background: There is substantial interest in the adaptation and application of so-called machine learning approaches to prognostic modelling of censored time-to-event data. These methods must be compared and evaluated against existing methods in a variety of scenarios to determine their predictive performance. A scoping review of how machine learning methods have been compared to traditional survival models is important to identify the comparisons that have been made and issues where they are lacking, biased towards one approach or misleading.

Methods: We conducted a scoping review of research articles published between 1 January 2000 and 2 December 2020 using PubMed. Eligible articles were those that used simulation studies to compare statistical and machine learning methods for risk prediction with a time-to-event outcome in a medical/healthcare setting. We focus on data-generating mechanisms (DGMs), the methods that have been compared, the estimands of the simulation studies, and the performance measures used to evaluate them.

Results: A total of ten articles were identified as eligible for the review. Six of the articles evaluated a method that was developed by the authors, four of which were machine learning methods, and the results almost always stated that this developed method's performance was equivalent to or better than the other methods compared. Comparisons were often biased towards the novel approach, with the majority only comparing against a basic Cox proportional hazards model, and in scenarios where it is clear it would not perform well. In many of the articles reviewed, key information was unclear, such as the number of simulation repetitions and how performance measures were calculated.

Conclusion: It is vital that method comparisons are unbiased and comprehensive, and this should be the goal even if realising it is difficult. Fully assessing how newly developed methods perform and how they compare to a variety of traditional statistical methods for prognostic modelling is imperative as these methods are already being applied in clinical contexts. Evaluations of the performance and usefulness of recently developed methods for risk prediction should be continued and reporting standards improved as these methods become increasingly popular.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
18 weeks
期刊最新文献
Models for predicting risk of endometrial cancer: a systematic review. Risk prediction tools for pressure injury occurrence: an umbrella review of systematic reviews reporting model development and validation methods. Rehabilitation outcomes after comprehensive post-acute inpatient rehabilitation following moderate to severe acquired brain injury-study protocol for an overall prognosis study based on routinely collected health data. Validation of prognostic models predicting mortality or ICU admission in patients with COVID-19 in low- and middle-income countries: a global individual participant data meta-analysis. Reported prevalence and comparison of diagnostic approaches for Candida africana: a systematic review with meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1