{"title":"船体二次部件裂纹扩展可靠性模型的建立","authors":"Siri Kolle Kleivane, B. Leira, S. Steen","doi":"10.21278/brod74106","DOIUrl":null,"url":null,"abstract":"Ship hull vibration is a major contributor to fatigue crack growth and main engine excitation is identified as an important vibration source. A general method to solve any vibration problem arising onboard a ship does not exist, which encourages the use of a reliability-based framework for assessing ship vibration and its consequences. A stochastic model of vibration response is developed for the probabilistic formulation of the failure probability of the occurrence of crack propagation of a secondary structural hull component. The secondary structural component considered is a pipe stack support. The pipe stack support connects a cargo pump pipe stack to the wall inside the cargo tank, and the support is welded directly onto this wall. First, a generic cargo hold model is analysed with engine speed and the relative distance between the engine and the structural component under consideration as stochastic variables. Then, submodels are used to investigate the local vibration of the support and the stress response is evaluated for a combination of different engine speeds and relative distances. A surface is fitted to the vibration response and used for probabilistic analysis by Monte Carlo (MC/DSPS) and FORM/SORM reliability methods. The limit state is formulated as the possibility of fatigue crack growth based on a threshold stress intensity factor. This threshold factor depends on the initial crack size and different initial sizes are investigated. The adequacy of the functional representation for the stochastic model, which is fitted to discrete data points, is also assessed. It is seen that a functional representation using a sum of sine terms give an adequate fit for describing the stress response induced by engine speed, while a polynomial representation was adequate for the relative distance variable. The failure probability estimated by Monte Carlo simulations and SORM indicates that the pipe stack support is not critical for the occurrence of fatigue crack growth. A main observation from the analysis is that the reliability-based design of secondary structural components, also looking at the interaction with the global structure, may help to improve the vibration-induced stresses in local hull details by application of proper design measures.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of a reliability model for crack growth occurrence for a secondary hull component\",\"authors\":\"Siri Kolle Kleivane, B. Leira, S. Steen\",\"doi\":\"10.21278/brod74106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ship hull vibration is a major contributor to fatigue crack growth and main engine excitation is identified as an important vibration source. A general method to solve any vibration problem arising onboard a ship does not exist, which encourages the use of a reliability-based framework for assessing ship vibration and its consequences. A stochastic model of vibration response is developed for the probabilistic formulation of the failure probability of the occurrence of crack propagation of a secondary structural hull component. The secondary structural component considered is a pipe stack support. The pipe stack support connects a cargo pump pipe stack to the wall inside the cargo tank, and the support is welded directly onto this wall. First, a generic cargo hold model is analysed with engine speed and the relative distance between the engine and the structural component under consideration as stochastic variables. Then, submodels are used to investigate the local vibration of the support and the stress response is evaluated for a combination of different engine speeds and relative distances. A surface is fitted to the vibration response and used for probabilistic analysis by Monte Carlo (MC/DSPS) and FORM/SORM reliability methods. The limit state is formulated as the possibility of fatigue crack growth based on a threshold stress intensity factor. This threshold factor depends on the initial crack size and different initial sizes are investigated. The adequacy of the functional representation for the stochastic model, which is fitted to discrete data points, is also assessed. It is seen that a functional representation using a sum of sine terms give an adequate fit for describing the stress response induced by engine speed, while a polynomial representation was adequate for the relative distance variable. The failure probability estimated by Monte Carlo simulations and SORM indicates that the pipe stack support is not critical for the occurrence of fatigue crack growth. A main observation from the analysis is that the reliability-based design of secondary structural components, also looking at the interaction with the global structure, may help to improve the vibration-induced stresses in local hull details by application of proper design measures.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod74106\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod74106","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Development of a reliability model for crack growth occurrence for a secondary hull component
Ship hull vibration is a major contributor to fatigue crack growth and main engine excitation is identified as an important vibration source. A general method to solve any vibration problem arising onboard a ship does not exist, which encourages the use of a reliability-based framework for assessing ship vibration and its consequences. A stochastic model of vibration response is developed for the probabilistic formulation of the failure probability of the occurrence of crack propagation of a secondary structural hull component. The secondary structural component considered is a pipe stack support. The pipe stack support connects a cargo pump pipe stack to the wall inside the cargo tank, and the support is welded directly onto this wall. First, a generic cargo hold model is analysed with engine speed and the relative distance between the engine and the structural component under consideration as stochastic variables. Then, submodels are used to investigate the local vibration of the support and the stress response is evaluated for a combination of different engine speeds and relative distances. A surface is fitted to the vibration response and used for probabilistic analysis by Monte Carlo (MC/DSPS) and FORM/SORM reliability methods. The limit state is formulated as the possibility of fatigue crack growth based on a threshold stress intensity factor. This threshold factor depends on the initial crack size and different initial sizes are investigated. The adequacy of the functional representation for the stochastic model, which is fitted to discrete data points, is also assessed. It is seen that a functional representation using a sum of sine terms give an adequate fit for describing the stress response induced by engine speed, while a polynomial representation was adequate for the relative distance variable. The failure probability estimated by Monte Carlo simulations and SORM indicates that the pipe stack support is not critical for the occurrence of fatigue crack growth. A main observation from the analysis is that the reliability-based design of secondary structural components, also looking at the interaction with the global structure, may help to improve the vibration-induced stresses in local hull details by application of proper design measures.
期刊介绍:
The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.