Soo-Won Choi, Jae-Ho Park, Ji-Woo Seo, Chaewon Mun, Yonghun Kim, Pungkeun Song, Myunghun Shin, Jung-Dae Kwon
{"title":"双面操作柔性透明薄膜光散射光伏的制备与优化","authors":"Soo-Won Choi, Jae-Ho Park, Ji-Woo Seo, Chaewon Mun, Yonghun Kim, Pungkeun Song, Myunghun Shin, Jung-Dae Kwon","doi":"10.1038/s41528-023-00251-6","DOIUrl":null,"url":null,"abstract":"Flexible and transparent thin-film silicon solar cells were fabricated and optimized for building-integrated photovoltaics and bifacial operation. A laser lift-off method was developed to avoid thermal damage during the transfer of light-scattering structures onto colorless polyimide substrates and thus enhance front-incidence photocurrent, while a dual n-type rear window layer was introduced to reduce optical losses, facilitate electron transport for rear incidence, and thus enhance performance during bifacial operation. The introduction of the window layer increased the rear-to-front power conversion efficiency ratio to ~86%. The optimized bifacial power conversion efficiency for front and rear irradiances of 1 and 0.3 sun, respectively, equaled 6.15%, and the average transmittance within 500–800 nm equaled 36.9%. Additionally, the flexible and transparent solar cells fabricated using laser lift-off exhibited good mechanical reliability (i.e., sustained 500 cycles at a bending radius of 6 mm) and were therefore suitable for building-integrated photovoltaics.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00251-6.pdf","citationCount":"1","resultStr":"{\"title\":\"Flexible and transparent thin-film light-scattering photovoltaics about fabrication and optimization for bifacial operation\",\"authors\":\"Soo-Won Choi, Jae-Ho Park, Ji-Woo Seo, Chaewon Mun, Yonghun Kim, Pungkeun Song, Myunghun Shin, Jung-Dae Kwon\",\"doi\":\"10.1038/s41528-023-00251-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible and transparent thin-film silicon solar cells were fabricated and optimized for building-integrated photovoltaics and bifacial operation. A laser lift-off method was developed to avoid thermal damage during the transfer of light-scattering structures onto colorless polyimide substrates and thus enhance front-incidence photocurrent, while a dual n-type rear window layer was introduced to reduce optical losses, facilitate electron transport for rear incidence, and thus enhance performance during bifacial operation. The introduction of the window layer increased the rear-to-front power conversion efficiency ratio to ~86%. The optimized bifacial power conversion efficiency for front and rear irradiances of 1 and 0.3 sun, respectively, equaled 6.15%, and the average transmittance within 500–800 nm equaled 36.9%. Additionally, the flexible and transparent solar cells fabricated using laser lift-off exhibited good mechanical reliability (i.e., sustained 500 cycles at a bending radius of 6 mm) and were therefore suitable for building-integrated photovoltaics.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-023-00251-6.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-023-00251-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-023-00251-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Flexible and transparent thin-film light-scattering photovoltaics about fabrication and optimization for bifacial operation
Flexible and transparent thin-film silicon solar cells were fabricated and optimized for building-integrated photovoltaics and bifacial operation. A laser lift-off method was developed to avoid thermal damage during the transfer of light-scattering structures onto colorless polyimide substrates and thus enhance front-incidence photocurrent, while a dual n-type rear window layer was introduced to reduce optical losses, facilitate electron transport for rear incidence, and thus enhance performance during bifacial operation. The introduction of the window layer increased the rear-to-front power conversion efficiency ratio to ~86%. The optimized bifacial power conversion efficiency for front and rear irradiances of 1 and 0.3 sun, respectively, equaled 6.15%, and the average transmittance within 500–800 nm equaled 36.9%. Additionally, the flexible and transparent solar cells fabricated using laser lift-off exhibited good mechanical reliability (i.e., sustained 500 cycles at a bending radius of 6 mm) and were therefore suitable for building-integrated photovoltaics.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.