{"title":"可满足模整数算法理论的局部搜索","authors":"Shaowei Cai, Bohan Li, Xindi Zhang","doi":"10.1145/3597495","DOIUrl":null,"url":null,"abstract":"Satisfiability Modulo Theories (SMT) refers to the problem of deciding the satisfiability of a formula with respect to certain background first-order theories. In this article, we focus on Satisfiablity Modulo Integer Arithmetic, which is referred to as SMT(IA), including both linear and non-linear integer arithmetic theories. Dominant approaches to SMT rely on calling a CDCL-based SAT solver, either in a lazy or eager flavour. Local search, a competitive approach to solving combinatorial problems including SAT, however, has not been well studied for SMT. We develop the first local-search algorithm for SMT(IA) by directly operating on variables, breaking through the traditional framework. We propose a local-search framework by considering the distinctions between Boolean and integer variables. Moreover, we design a novel operator and scoring functions tailored for integer arithmetic, as well as a two-level operation selection heuristic. Putting these together, we develop a local search SMT(IA) solver called LocalSMT. Experiments are carried out to evaluate LocalSMT on benchmark sets from SMT-LIB. The results show that LocalSMT is competitive and complementary with state-of-the-art SMT solvers, and performs particularly well on those formulae with only integer variables. A simple sequential portfolio with Z3 improves the state-of-the-art on satisfiable benchmark sets from SMT-LIB.","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Local Search For Satisfiability Modulo Integer Arithmetic Theories\",\"authors\":\"Shaowei Cai, Bohan Li, Xindi Zhang\",\"doi\":\"10.1145/3597495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satisfiability Modulo Theories (SMT) refers to the problem of deciding the satisfiability of a formula with respect to certain background first-order theories. In this article, we focus on Satisfiablity Modulo Integer Arithmetic, which is referred to as SMT(IA), including both linear and non-linear integer arithmetic theories. Dominant approaches to SMT rely on calling a CDCL-based SAT solver, either in a lazy or eager flavour. Local search, a competitive approach to solving combinatorial problems including SAT, however, has not been well studied for SMT. We develop the first local-search algorithm for SMT(IA) by directly operating on variables, breaking through the traditional framework. We propose a local-search framework by considering the distinctions between Boolean and integer variables. Moreover, we design a novel operator and scoring functions tailored for integer arithmetic, as well as a two-level operation selection heuristic. Putting these together, we develop a local search SMT(IA) solver called LocalSMT. Experiments are carried out to evaluate LocalSMT on benchmark sets from SMT-LIB. The results show that LocalSMT is competitive and complementary with state-of-the-art SMT solvers, and performs particularly well on those formulae with only integer variables. A simple sequential portfolio with Z3 improves the state-of-the-art on satisfiable benchmark sets from SMT-LIB.\",\"PeriodicalId\":50916,\"journal\":{\"name\":\"ACM Transactions on Computational Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computational Logic\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3597495\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3597495","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Local Search For Satisfiability Modulo Integer Arithmetic Theories
Satisfiability Modulo Theories (SMT) refers to the problem of deciding the satisfiability of a formula with respect to certain background first-order theories. In this article, we focus on Satisfiablity Modulo Integer Arithmetic, which is referred to as SMT(IA), including both linear and non-linear integer arithmetic theories. Dominant approaches to SMT rely on calling a CDCL-based SAT solver, either in a lazy or eager flavour. Local search, a competitive approach to solving combinatorial problems including SAT, however, has not been well studied for SMT. We develop the first local-search algorithm for SMT(IA) by directly operating on variables, breaking through the traditional framework. We propose a local-search framework by considering the distinctions between Boolean and integer variables. Moreover, we design a novel operator and scoring functions tailored for integer arithmetic, as well as a two-level operation selection heuristic. Putting these together, we develop a local search SMT(IA) solver called LocalSMT. Experiments are carried out to evaluate LocalSMT on benchmark sets from SMT-LIB. The results show that LocalSMT is competitive and complementary with state-of-the-art SMT solvers, and performs particularly well on those formulae with only integer variables. A simple sequential portfolio with Z3 improves the state-of-the-art on satisfiable benchmark sets from SMT-LIB.
期刊介绍:
TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI).
Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages.
The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field.
Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.