可满足模整数算法理论的局部搜索

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS ACM Transactions on Computational Logic Pub Date : 2022-11-18 DOI:10.1145/3597495
Shaowei Cai, Bohan Li, Xindi Zhang
{"title":"可满足模整数算法理论的局部搜索","authors":"Shaowei Cai, Bohan Li, Xindi Zhang","doi":"10.1145/3597495","DOIUrl":null,"url":null,"abstract":"Satisfiability Modulo Theories (SMT) refers to the problem of deciding the satisfiability of a formula with respect to certain background first-order theories. In this article, we focus on Satisfiablity Modulo Integer Arithmetic, which is referred to as SMT(IA), including both linear and non-linear integer arithmetic theories. Dominant approaches to SMT rely on calling a CDCL-based SAT solver, either in a lazy or eager flavour. Local search, a competitive approach to solving combinatorial problems including SAT, however, has not been well studied for SMT. We develop the first local-search algorithm for SMT(IA) by directly operating on variables, breaking through the traditional framework. We propose a local-search framework by considering the distinctions between Boolean and integer variables. Moreover, we design a novel operator and scoring functions tailored for integer arithmetic, as well as a two-level operation selection heuristic. Putting these together, we develop a local search SMT(IA) solver called LocalSMT. Experiments are carried out to evaluate LocalSMT on benchmark sets from SMT-LIB. The results show that LocalSMT is competitive and complementary with state-of-the-art SMT solvers, and performs particularly well on those formulae with only integer variables. A simple sequential portfolio with Z3 improves the state-of-the-art on satisfiable benchmark sets from SMT-LIB.","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Local Search For Satisfiability Modulo Integer Arithmetic Theories\",\"authors\":\"Shaowei Cai, Bohan Li, Xindi Zhang\",\"doi\":\"10.1145/3597495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satisfiability Modulo Theories (SMT) refers to the problem of deciding the satisfiability of a formula with respect to certain background first-order theories. In this article, we focus on Satisfiablity Modulo Integer Arithmetic, which is referred to as SMT(IA), including both linear and non-linear integer arithmetic theories. Dominant approaches to SMT rely on calling a CDCL-based SAT solver, either in a lazy or eager flavour. Local search, a competitive approach to solving combinatorial problems including SAT, however, has not been well studied for SMT. We develop the first local-search algorithm for SMT(IA) by directly operating on variables, breaking through the traditional framework. We propose a local-search framework by considering the distinctions between Boolean and integer variables. Moreover, we design a novel operator and scoring functions tailored for integer arithmetic, as well as a two-level operation selection heuristic. Putting these together, we develop a local search SMT(IA) solver called LocalSMT. Experiments are carried out to evaluate LocalSMT on benchmark sets from SMT-LIB. The results show that LocalSMT is competitive and complementary with state-of-the-art SMT solvers, and performs particularly well on those formulae with only integer variables. A simple sequential portfolio with Z3 improves the state-of-the-art on satisfiable benchmark sets from SMT-LIB.\",\"PeriodicalId\":50916,\"journal\":{\"name\":\"ACM Transactions on Computational Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computational Logic\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3597495\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3597495","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

可满足模理论(SMT)是指在一定背景一阶理论下确定公式可满足性的问题。在本文中,我们将重点讨论可满足模整数算法,即SMT(IA),包括线性和非线性整数算法理论。SMT的主要方法依赖于调用基于cdcl的SAT求解器,要么是懒惰的,要么是急切的。局部搜索是解决包括SAT在内的组合问题的一种竞争性方法,但在SMT中尚未得到很好的研究。突破传统框架,直接对变量进行操作,开发了SMT(IA)的首个局部搜索算法。通过考虑布尔变量和整数变量之间的区别,我们提出了一个局部搜索框架。此外,我们还设计了一种适合整数运算的算子和评分函数,以及一种两级操作选择启发式算法。将这些组合在一起,我们开发了一个名为LocalSMT的本地搜索SMT(IA)求解器。在SMT-LIB的基准集上进行了LocalSMT的评估实验。结果表明,LocalSMT与最先进的SMT求解器具有竞争性和互补性,并且在只有整数变量的公式上表现得特别好。使用Z3的简单顺序组合提高了SMT-LIB中可满足基准集的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local Search For Satisfiability Modulo Integer Arithmetic Theories
Satisfiability Modulo Theories (SMT) refers to the problem of deciding the satisfiability of a formula with respect to certain background first-order theories. In this article, we focus on Satisfiablity Modulo Integer Arithmetic, which is referred to as SMT(IA), including both linear and non-linear integer arithmetic theories. Dominant approaches to SMT rely on calling a CDCL-based SAT solver, either in a lazy or eager flavour. Local search, a competitive approach to solving combinatorial problems including SAT, however, has not been well studied for SMT. We develop the first local-search algorithm for SMT(IA) by directly operating on variables, breaking through the traditional framework. We propose a local-search framework by considering the distinctions between Boolean and integer variables. Moreover, we design a novel operator and scoring functions tailored for integer arithmetic, as well as a two-level operation selection heuristic. Putting these together, we develop a local search SMT(IA) solver called LocalSMT. Experiments are carried out to evaluate LocalSMT on benchmark sets from SMT-LIB. The results show that LocalSMT is competitive and complementary with state-of-the-art SMT solvers, and performs particularly well on those formulae with only integer variables. A simple sequential portfolio with Z3 improves the state-of-the-art on satisfiable benchmark sets from SMT-LIB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Computational Logic
ACM Transactions on Computational Logic 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI). Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages. The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field. Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.
期刊最新文献
Computationally Hard Problems for Logic Programs under Answer Set Semantics Fundamental Logic is Decidable SAT Modulo Symmetries for Graph Generation and Enumeration Strong Backdoors for Default Logic One or Nothing: Anti-unification over the Simply-Typed Lambda Calculus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1