分散式乡镇固体废物焚烧炉内温度和氧浓度场特征

Dongsheng Shen, Wenxiang Li, Foqin Sun, Shengqi Qi, Hao Tan, Chen Chen, Yuyang Long
{"title":"分散式乡镇固体废物焚烧炉内温度和氧浓度场特征","authors":"Dongsheng Shen,&nbsp;Wenxiang Li,&nbsp;Foqin Sun,&nbsp;Shengqi Qi,&nbsp;Hao Tan,&nbsp;Chen Chen,&nbsp;Yuyang Long","doi":"10.1007/s42768-022-00092-5","DOIUrl":null,"url":null,"abstract":"<div><p>Decentralized solid-waste incinerators (DSWIs) have certain advantages for waste disposal from villages and towns. However, the incineration condition is always affected by the distribution of temperature and oxygen concentration, which causes difficulties in operation and maintenance. In this study, the temperature and oxygen concentration distribution of DSWI were characterized using different air flow rates and bottom ash volumes. The results showed that the adjustment of air flow has no significant influence on the heating process of the DSWI, while the retention of bottom ash did affect the temperature and oxygen concentration fields in the furnace. When the air flow rate was increased without the retention of bottom ash, 99% of the furnace volume temperature was observed between 780 °C and 800 °C. However, once the bottom ash was retained, the whole furnace temperature was steadily maintained between 800 °C and 850 °C. When the air flow rate was increased without bottom ash, the highest furnace volume percentage of oxygen concentrations higher than 3% maxed out at 11% volume, while it could reach 100% when bottom ash remained. The distribution of the temperature and oxygen concentration in the DSWI characterized by this research provides strong support for the operation and management of such systems.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-022-00092-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterization of the temperature and oxygen concentration field in a decentralized solid-waste incinerator for villages and towns\",\"authors\":\"Dongsheng Shen,&nbsp;Wenxiang Li,&nbsp;Foqin Sun,&nbsp;Shengqi Qi,&nbsp;Hao Tan,&nbsp;Chen Chen,&nbsp;Yuyang Long\",\"doi\":\"10.1007/s42768-022-00092-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Decentralized solid-waste incinerators (DSWIs) have certain advantages for waste disposal from villages and towns. However, the incineration condition is always affected by the distribution of temperature and oxygen concentration, which causes difficulties in operation and maintenance. In this study, the temperature and oxygen concentration distribution of DSWI were characterized using different air flow rates and bottom ash volumes. The results showed that the adjustment of air flow has no significant influence on the heating process of the DSWI, while the retention of bottom ash did affect the temperature and oxygen concentration fields in the furnace. When the air flow rate was increased without the retention of bottom ash, 99% of the furnace volume temperature was observed between 780 °C and 800 °C. However, once the bottom ash was retained, the whole furnace temperature was steadily maintained between 800 °C and 850 °C. When the air flow rate was increased without bottom ash, the highest furnace volume percentage of oxygen concentrations higher than 3% maxed out at 11% volume, while it could reach 100% when bottom ash remained. The distribution of the temperature and oxygen concentration in the DSWI characterized by this research provides strong support for the operation and management of such systems.</p></div>\",\"PeriodicalId\":807,\"journal\":{\"name\":\"Waste Disposal & Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42768-022-00092-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste Disposal & Sustainable Energy\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42768-022-00092-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-022-00092-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分散式固体废物焚化炉对乡镇废物处理具有一定的优势。然而,焚烧条件总是受到温度和氧浓度分布的影响,给运行和维护带来困难。在本研究中,采用不同的空气流速和底灰体积对DSWI的温度和氧浓度分布进行了表征。结果表明,气流的调节对DSWI的加热过程没有显著影响,而底灰的保留对炉内温度场和氧浓度场有影响。在不保留底灰的情况下增加风量时,99%的炉体温度在780 ~ 800℃之间。然而,一旦底部灰被保留,整个炉的温度稳定地保持在800°C和850°C之间。在不含底灰的情况下,当空气流量增加时,氧浓度高于3%的炉膛容积率最高达到11%,而在不含底灰的情况下炉膛容积率可达100%。本研究表征的DSWI的温度和氧浓度分布为该系统的运行和管理提供了强有力的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of the temperature and oxygen concentration field in a decentralized solid-waste incinerator for villages and towns

Decentralized solid-waste incinerators (DSWIs) have certain advantages for waste disposal from villages and towns. However, the incineration condition is always affected by the distribution of temperature and oxygen concentration, which causes difficulties in operation and maintenance. In this study, the temperature and oxygen concentration distribution of DSWI were characterized using different air flow rates and bottom ash volumes. The results showed that the adjustment of air flow has no significant influence on the heating process of the DSWI, while the retention of bottom ash did affect the temperature and oxygen concentration fields in the furnace. When the air flow rate was increased without the retention of bottom ash, 99% of the furnace volume temperature was observed between 780 °C and 800 °C. However, once the bottom ash was retained, the whole furnace temperature was steadily maintained between 800 °C and 850 °C. When the air flow rate was increased without bottom ash, the highest furnace volume percentage of oxygen concentrations higher than 3% maxed out at 11% volume, while it could reach 100% when bottom ash remained. The distribution of the temperature and oxygen concentration in the DSWI characterized by this research provides strong support for the operation and management of such systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Slum dynamics: the interplay of remittances, waste disposal and health outcomes A review on graphite carbon nitride (g-C3N4)-based composite for antibiotics and dye degradation and hydrogen production Functionalizing carbon nanofibers with chicken manure to catalyse oxygen reduction reaction in a fuel cell Research on heat dissipation optimization and energy conservation of supercapacitor energy storage tram Innovations in food waste management: from resource recovery to sustainable solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1