镀银红壤纳米复合材料的水消毒性能

IF 2.4 4区 环境科学与生态学 Q2 WATER RESOURCES Water Quality Research Journal Pub Date : 2018-10-31 DOI:10.2166/WQRJ.2018.021
E. Mahmoudi, F. Moeinpour
{"title":"镀银红壤纳米复合材料的水消毒性能","authors":"E. Mahmoudi, F. Moeinpour","doi":"10.2166/WQRJ.2018.021","DOIUrl":null,"url":null,"abstract":"\n The present research studied the anti-bacterial effect of silver-coated red soil nanoparticles on Gram-negative bacteria Escherichia coli (E. coli) from water. The effects of disinfectant concentration (0.02, 0.05 and 0.1 g/mL), contact time (10, 20 and 30 minutes) and bacteria number (102, 104 and 106 CFU/mL) have been also investigated. To obtain important factors, the interactions between factors and optimal experimental design in surface response method were used based on Box-Behnken design. According to the research findings, the system is efficient in eliminating E. coli. The results showed that E. coli elimination efficiency intensified through increasing the amount of disinfectant from 0.02 to 0.1 g/mL. Expanding contact time from 10 minutes to 30 minutes also heightened the E. coli elimination rate. R2 for E. coli elimination is 0.9956 indicating a good agreement between model experimental data and forecasting data.","PeriodicalId":23720,"journal":{"name":"Water Quality Research Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJ.2018.021","citationCount":"2","resultStr":"{\"title\":\"Performance of silver-coated red soil nanocomposites in water disinfection\",\"authors\":\"E. Mahmoudi, F. Moeinpour\",\"doi\":\"10.2166/WQRJ.2018.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The present research studied the anti-bacterial effect of silver-coated red soil nanoparticles on Gram-negative bacteria Escherichia coli (E. coli) from water. The effects of disinfectant concentration (0.02, 0.05 and 0.1 g/mL), contact time (10, 20 and 30 minutes) and bacteria number (102, 104 and 106 CFU/mL) have been also investigated. To obtain important factors, the interactions between factors and optimal experimental design in surface response method were used based on Box-Behnken design. According to the research findings, the system is efficient in eliminating E. coli. The results showed that E. coli elimination efficiency intensified through increasing the amount of disinfectant from 0.02 to 0.1 g/mL. Expanding contact time from 10 minutes to 30 minutes also heightened the E. coli elimination rate. R2 for E. coli elimination is 0.9956 indicating a good agreement between model experimental data and forecasting data.\",\"PeriodicalId\":23720,\"journal\":{\"name\":\"Water Quality Research Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2018-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2166/WQRJ.2018.021\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Quality Research Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/WQRJ.2018.021\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/WQRJ.2018.021","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 2

摘要

研究了涂银红壤纳米颗粒对水中革兰氏阴性大肠杆菌的抑菌作用。考察了消毒液浓度(0.02、0.05和0.1 g/mL)、接触时间(10、20和30 min)和细菌数量(102、104和106 CFU/mL)对消毒效果的影响。基于Box-Behnken设计,利用表面响应法中各因素之间的相互作用和最优试验设计来获取重要因素。根据研究结果,该系统可以有效地去除大肠杆菌。结果表明,将消毒液用量从0.02 g/mL增加到0.1 g/mL,对大肠杆菌的杀灭效果增强。将接触时间从10分钟延长到30分钟也提高了大肠杆菌的去除率。大肠杆菌消除的R2为0.9956,表明模型实验数据与预测数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of silver-coated red soil nanocomposites in water disinfection
The present research studied the anti-bacterial effect of silver-coated red soil nanoparticles on Gram-negative bacteria Escherichia coli (E. coli) from water. The effects of disinfectant concentration (0.02, 0.05 and 0.1 g/mL), contact time (10, 20 and 30 minutes) and bacteria number (102, 104 and 106 CFU/mL) have been also investigated. To obtain important factors, the interactions between factors and optimal experimental design in surface response method were used based on Box-Behnken design. According to the research findings, the system is efficient in eliminating E. coli. The results showed that E. coli elimination efficiency intensified through increasing the amount of disinfectant from 0.02 to 0.1 g/mL. Expanding contact time from 10 minutes to 30 minutes also heightened the E. coli elimination rate. R2 for E. coli elimination is 0.9956 indicating a good agreement between model experimental data and forecasting data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
8.70%
发文量
0
期刊最新文献
Development and evaluation of filter for canal water potability Phosphorus removal and recovery from anaerobic bioreactor effluent using a batch electrocoagulation process A Fuzzy Inference System for enhanced groundwater quality assessment and index determination The risk of bacterial virulence in the face of concentrated river pollution Efficient removal of perfluorinated compounds with the polyamide nanofiltration membrane and membrane fouling resistance analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1