过渡模式下底层船体的一般强度、能量效率(EEDI)和能量波准则(EWC)

IF 2 3区 工程技术 Q2 ENGINEERING, MARINE Polish Maritime Research Pub Date : 2022-09-01 DOI:10.2478/pomr-2022-0021
O. Kanifolskyi
{"title":"过渡模式下底层船体的一般强度、能量效率(EEDI)和能量波准则(EWC)","authors":"O. Kanifolskyi","doi":"10.2478/pomr-2022-0021","DOIUrl":null,"url":null,"abstract":"Abstract In the modern world, environmental issues come to the fore. The document of MARPOL for reducing the emission of pollutants into the atmosphere relates to the energy efficiency coefficient EEDI. This coefficient is directly related to the power of the main engine and, accordingly, to the water resistance. The way to reduce the energy efficiency factor EEDI by increasing the relative length LV3 {L \\over {\\root 3 \\of V }} of the ship was proposed in this article. To determine the maximum value of the relative length, knowledge of the general strength of the vessel is required. The value of the relative section modulus of an equivalent girder for a small vessel of transitional mode is defined. The result of the graphic solution of two equations is the value of such a relative section modulus. This parameter is required to determine the limiting value of the relative length and to find solutions to reduce the coefficient EEDI. Comparative analysis of the obtained data with the data of the strength and weight of the H-girder with a length similar to the ship was conducted. The formula for determining the limiting value of the relative length was obtained from the equation of general strength. For a preliminary assessment of the future project of the ship, in terms of permissible design accelerations and the possibility of the ship moving against a sea wave of a certain height, a graph was built based on the application of the energy wave criterion EWC and the requirements of various classification societies.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"29 1","pages":"4 - 10"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"General Strength, Energy Efficiency (EEDI), and Energy Wave Criterion (EWC) of Deadrise Hulls for Transitional Mode\",\"authors\":\"O. Kanifolskyi\",\"doi\":\"10.2478/pomr-2022-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the modern world, environmental issues come to the fore. The document of MARPOL for reducing the emission of pollutants into the atmosphere relates to the energy efficiency coefficient EEDI. This coefficient is directly related to the power of the main engine and, accordingly, to the water resistance. The way to reduce the energy efficiency factor EEDI by increasing the relative length LV3 {L \\\\over {\\\\root 3 \\\\of V }} of the ship was proposed in this article. To determine the maximum value of the relative length, knowledge of the general strength of the vessel is required. The value of the relative section modulus of an equivalent girder for a small vessel of transitional mode is defined. The result of the graphic solution of two equations is the value of such a relative section modulus. This parameter is required to determine the limiting value of the relative length and to find solutions to reduce the coefficient EEDI. Comparative analysis of the obtained data with the data of the strength and weight of the H-girder with a length similar to the ship was conducted. The formula for determining the limiting value of the relative length was obtained from the equation of general strength. For a preliminary assessment of the future project of the ship, in terms of permissible design accelerations and the possibility of the ship moving against a sea wave of a certain height, a graph was built based on the application of the energy wave criterion EWC and the requirements of various classification societies.\",\"PeriodicalId\":49681,\"journal\":{\"name\":\"Polish Maritime Research\",\"volume\":\"29 1\",\"pages\":\"4 - 10\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Maritime Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2022-0021\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2022-0021","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 3

摘要

在现代社会,环境问题是一个突出的问题。MARPOL关于减少污染物排放到大气中的文件涉及能源效率系数EEDI。这个系数与主机的功率直接相关,因此也与水阻力有关。本文提出了通过增加船舶的相对长度LV3 {L \ / {\root 3 \of V}}来降低能效系数EEDI的方法。为了确定相对长度的最大值,需要了解容器的一般强度。定义了过渡模态小型船舶等效梁的相对截面模量。两个方程的图形解的结果就是这种相对截面模量的值。需要这个参数来确定相对长度的极限值,并找到降低EEDI系数的解。将所得数据与长度与船体相近的h型梁的强度和重量数据进行了对比分析。由一般强度方程得到了确定相对长度极限值的公式。为了对船舶的未来项目进行初步评估,根据允许的设计加速度和船舶在一定高度的海浪中移动的可能性,根据能量波准则EWC的应用和各个船级社的要求,建立了一个图表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
General Strength, Energy Efficiency (EEDI), and Energy Wave Criterion (EWC) of Deadrise Hulls for Transitional Mode
Abstract In the modern world, environmental issues come to the fore. The document of MARPOL for reducing the emission of pollutants into the atmosphere relates to the energy efficiency coefficient EEDI. This coefficient is directly related to the power of the main engine and, accordingly, to the water resistance. The way to reduce the energy efficiency factor EEDI by increasing the relative length LV3 {L \over {\root 3 \of V }} of the ship was proposed in this article. To determine the maximum value of the relative length, knowledge of the general strength of the vessel is required. The value of the relative section modulus of an equivalent girder for a small vessel of transitional mode is defined. The result of the graphic solution of two equations is the value of such a relative section modulus. This parameter is required to determine the limiting value of the relative length and to find solutions to reduce the coefficient EEDI. Comparative analysis of the obtained data with the data of the strength and weight of the H-girder with a length similar to the ship was conducted. The formula for determining the limiting value of the relative length was obtained from the equation of general strength. For a preliminary assessment of the future project of the ship, in terms of permissible design accelerations and the possibility of the ship moving against a sea wave of a certain height, a graph was built based on the application of the energy wave criterion EWC and the requirements of various classification societies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polish Maritime Research
Polish Maritime Research 工程技术-工程:海洋
CiteScore
3.70
自引率
45.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components. All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as: all types of vessels and their equipment, fixed and floating offshore units and their components, autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV). We welcome submissions from these fields in the following technical topics: ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc., structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc., marine equipment: ship and offshore unit power plants: overboarding equipment; etc.
期刊最新文献
Exploration of a Model Thermoacoustic Turbogenerator with a Bidirectional Turbine Computer-Aided System for Layout of Fire Hydrants on Boards Designed Vessel Using the Particle Swarm Optimization Algorithm Optimal UV Quantity for a Ballast Water Treatment System for Compliance with Imo Standards Human Resource Management Digitalisation in Multidisciplinary Ship Design Companies Effects of Sway and Roll Excitations on Sloshing Loads in a KC-1 Membrane LNG Tank
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1