{"title":"金属纳米颗粒/介孔碳二维纳米片的模块化组装","authors":"Pengpeng Qiu, Xingmiao Zhang, Yan Ai, Wei Luo, Wei Li, Dongyuan Zhao","doi":"10.1038/s41427-023-00482-z","DOIUrl":null,"url":null,"abstract":"The manipulation of polymeric micelles across extended-length scales is a key challenge in the design of integrated mesoporous materials with well-defined geometry and advanced functions. Herein, we demonstrate a modular assembly strategy to construct metal nanoparticle functionalized mesoporous carbon two-dimensional (2D) nanosheets by organizing zero-dimensional (0D) spherical monomicelle modules on the 2D supporting blocks. The modular assembly process involves two key steps: the “modularization” step is used to synthesize highly uniform metal–catecholamine (MC) complex functionalized monomicelle “modules” that can be conveniently assembled on the 2D supporting blocks (graphene oxide (GO), WS2, and MXene) in the following “assembly” step. After an annealing process, the resultant composites possess a single-layered 2D nanosheet surrounded by two single-layered mesoporous carbon at both sides and exhibit highly ordered mesostructures with large surface areas (~385 m2 g−1), tunable pore sizes (16–25 nm) and highly dispersed metal-containing nanoparticles. Due to the modularity of this assembly process, a range of metal species (Co, Fe, Ni, V, Cu, Pd, FeCo, CoNi, and FeCoNi) can be in-situ incorporated into the 2D mesoporous frameworks, which are partially embedded in the pore walls with the remaining part exposed in the pore channels. Benefiting from the unique textual structures, the resultant GO-derived functional mesoporous carbon nanosheets (Co as the functional species and being annealed at 850 °C) exhibit excellent electrocatalytic activity, long-term stability, and superior methanol tolerance for oxygen reduction reaction, which holds great potential as a catalyst for fuel cells. A modular assembly strategy has been demonstrated to construct metal nanoparticles functionalized mesoporous carbon two-dimensional (2D) nanosheets by organizing zero-dimensional (0D) spherical monomicelle modules on the 2D supporting blocks. The resultant materials exhibit an excellent electrocatalytic activity for oxygen reduction reaction, which holds a great potential as a catalyst for fuel cells.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"15 1","pages":"1-9"},"PeriodicalIF":8.6000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00482-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Modular assembly of metal nanoparticles/mesoporous carbon two-dimensional nanosheets\",\"authors\":\"Pengpeng Qiu, Xingmiao Zhang, Yan Ai, Wei Luo, Wei Li, Dongyuan Zhao\",\"doi\":\"10.1038/s41427-023-00482-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The manipulation of polymeric micelles across extended-length scales is a key challenge in the design of integrated mesoporous materials with well-defined geometry and advanced functions. Herein, we demonstrate a modular assembly strategy to construct metal nanoparticle functionalized mesoporous carbon two-dimensional (2D) nanosheets by organizing zero-dimensional (0D) spherical monomicelle modules on the 2D supporting blocks. The modular assembly process involves two key steps: the “modularization” step is used to synthesize highly uniform metal–catecholamine (MC) complex functionalized monomicelle “modules” that can be conveniently assembled on the 2D supporting blocks (graphene oxide (GO), WS2, and MXene) in the following “assembly” step. After an annealing process, the resultant composites possess a single-layered 2D nanosheet surrounded by two single-layered mesoporous carbon at both sides and exhibit highly ordered mesostructures with large surface areas (~385 m2 g−1), tunable pore sizes (16–25 nm) and highly dispersed metal-containing nanoparticles. Due to the modularity of this assembly process, a range of metal species (Co, Fe, Ni, V, Cu, Pd, FeCo, CoNi, and FeCoNi) can be in-situ incorporated into the 2D mesoporous frameworks, which are partially embedded in the pore walls with the remaining part exposed in the pore channels. Benefiting from the unique textual structures, the resultant GO-derived functional mesoporous carbon nanosheets (Co as the functional species and being annealed at 850 °C) exhibit excellent electrocatalytic activity, long-term stability, and superior methanol tolerance for oxygen reduction reaction, which holds great potential as a catalyst for fuel cells. A modular assembly strategy has been demonstrated to construct metal nanoparticles functionalized mesoporous carbon two-dimensional (2D) nanosheets by organizing zero-dimensional (0D) spherical monomicelle modules on the 2D supporting blocks. The resultant materials exhibit an excellent electrocatalytic activity for oxygen reduction reaction, which holds a great potential as a catalyst for fuel cells.\",\"PeriodicalId\":19382,\"journal\":{\"name\":\"Npg Asia Materials\",\"volume\":\"15 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41427-023-00482-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npg Asia Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41427-023-00482-z\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-023-00482-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Modular assembly of metal nanoparticles/mesoporous carbon two-dimensional nanosheets
The manipulation of polymeric micelles across extended-length scales is a key challenge in the design of integrated mesoporous materials with well-defined geometry and advanced functions. Herein, we demonstrate a modular assembly strategy to construct metal nanoparticle functionalized mesoporous carbon two-dimensional (2D) nanosheets by organizing zero-dimensional (0D) spherical monomicelle modules on the 2D supporting blocks. The modular assembly process involves two key steps: the “modularization” step is used to synthesize highly uniform metal–catecholamine (MC) complex functionalized monomicelle “modules” that can be conveniently assembled on the 2D supporting blocks (graphene oxide (GO), WS2, and MXene) in the following “assembly” step. After an annealing process, the resultant composites possess a single-layered 2D nanosheet surrounded by two single-layered mesoporous carbon at both sides and exhibit highly ordered mesostructures with large surface areas (~385 m2 g−1), tunable pore sizes (16–25 nm) and highly dispersed metal-containing nanoparticles. Due to the modularity of this assembly process, a range of metal species (Co, Fe, Ni, V, Cu, Pd, FeCo, CoNi, and FeCoNi) can be in-situ incorporated into the 2D mesoporous frameworks, which are partially embedded in the pore walls with the remaining part exposed in the pore channels. Benefiting from the unique textual structures, the resultant GO-derived functional mesoporous carbon nanosheets (Co as the functional species and being annealed at 850 °C) exhibit excellent electrocatalytic activity, long-term stability, and superior methanol tolerance for oxygen reduction reaction, which holds great potential as a catalyst for fuel cells. A modular assembly strategy has been demonstrated to construct metal nanoparticles functionalized mesoporous carbon two-dimensional (2D) nanosheets by organizing zero-dimensional (0D) spherical monomicelle modules on the 2D supporting blocks. The resultant materials exhibit an excellent electrocatalytic activity for oxygen reduction reaction, which holds a great potential as a catalyst for fuel cells.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.