{"title":"GHz声表面波对飞行激子和单个激子的操纵","authors":"M. Yuan, K. Biermann, P. Santos","doi":"10.1116/5.0095152","DOIUrl":null,"url":null,"abstract":"An important prerequisite for quantum communication networks is the transfer and manipulation of single particles on a chip as well as their interconversion to single photons for long-range information exchange. GHz acoustic waves are versatile tools for the implementation of these functionalities in hybrid quantum systems. In particular, flying excitons propelled by GHz surface acoustic waves (SAWs) can potentially satisfy this prerequisite. In this article, we review recent works on the application of GHz SAWs to realize flying excitons in semiconductor-based systems. Most importantly, we have identified suitable two-level centers for the storage of single excitons, thus forming single excitonic qubits, and interconverted them to single photons with a very high emission rate dictated by the GHz-SAW pumping. The work covered here paves the way for on-chip, exciton-based qubit manipulation.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Manipulation of flying and single excitons by GHz surface acoustic waves\",\"authors\":\"M. Yuan, K. Biermann, P. Santos\",\"doi\":\"10.1116/5.0095152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important prerequisite for quantum communication networks is the transfer and manipulation of single particles on a chip as well as their interconversion to single photons for long-range information exchange. GHz acoustic waves are versatile tools for the implementation of these functionalities in hybrid quantum systems. In particular, flying excitons propelled by GHz surface acoustic waves (SAWs) can potentially satisfy this prerequisite. In this article, we review recent works on the application of GHz SAWs to realize flying excitons in semiconductor-based systems. Most importantly, we have identified suitable two-level centers for the storage of single excitons, thus forming single excitonic qubits, and interconverted them to single photons with a very high emission rate dictated by the GHz-SAW pumping. The work covered here paves the way for on-chip, exciton-based qubit manipulation.\",\"PeriodicalId\":93525,\"journal\":{\"name\":\"AVS quantum science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVS quantum science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/5.0095152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0095152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Manipulation of flying and single excitons by GHz surface acoustic waves
An important prerequisite for quantum communication networks is the transfer and manipulation of single particles on a chip as well as their interconversion to single photons for long-range information exchange. GHz acoustic waves are versatile tools for the implementation of these functionalities in hybrid quantum systems. In particular, flying excitons propelled by GHz surface acoustic waves (SAWs) can potentially satisfy this prerequisite. In this article, we review recent works on the application of GHz SAWs to realize flying excitons in semiconductor-based systems. Most importantly, we have identified suitable two-level centers for the storage of single excitons, thus forming single excitonic qubits, and interconverted them to single photons with a very high emission rate dictated by the GHz-SAW pumping. The work covered here paves the way for on-chip, exciton-based qubit manipulation.