配体诱导的G蛋白和多巴胺D1受体的β-阻滞蛋白信号的计算见解

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-04-15 DOI:10.1007/s10822-023-00503-7
Haoxi Li, Nikhil M. Urs, Nicole Horenstein
{"title":"配体诱导的G蛋白和多巴胺D1受体的β-阻滞蛋白信号的计算见解","authors":"Haoxi Li,&nbsp;Nikhil M. Urs,&nbsp;Nicole Horenstein","doi":"10.1007/s10822-023-00503-7","DOIUrl":null,"url":null,"abstract":"<div><p>The dopamine D1 receptor (D1R), is a class A G protein coupled-receptor (GPCR) which has been a promising drug target for psychiatric and neurological disorders such as Parkinson’s disease (PD). Previous studies have suggested that therapeutic effects can be realized by targeting the β-arrestin signaling pathway of dopamine receptors, while overactivation of the G protein-dependent pathways leads to side effects, such as dyskinesias. Therefore, it is highly desirable to develop a D1R ligand that selectively regulates the β-arrestin pathway. Currently, most D1R agonists are signaling-balanced and stimulate both G protein and β-arrestin pathways, with a few reports of G protein biased ligands. However, identification and characterization of β-arrestin biased D1R agonists has been a challenge thus far. In this study, we implemented Gaussian accelerated molecular dynamics (GaMD) simulations to provide valuable computational insights into the possible underlying molecular mechanism of the different signaling properties of two catechol and two non-catechol D1R agonists that are either G protein biased or signaling-balanced. Dynamic network analysis further identified critical residues in the allosteric signaling network of D1R for each ligand at different conformational or binding states. Some of these residues are crucial for G protein or arrestin signals of GPCRs based on previous studies. Finally, we provided a molecular design strategy which can be utilized by medicinal chemists to develop potential β-arrestin biased D1R ligands. The proposed hypotheses are experimentally testable and can guide the development of safer and more effective medications for a variety of CNS disorders.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational insights into ligand–induced G protein and β-arrestin signaling of the dopamine D1 receptor\",\"authors\":\"Haoxi Li,&nbsp;Nikhil M. Urs,&nbsp;Nicole Horenstein\",\"doi\":\"10.1007/s10822-023-00503-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dopamine D1 receptor (D1R), is a class A G protein coupled-receptor (GPCR) which has been a promising drug target for psychiatric and neurological disorders such as Parkinson’s disease (PD). Previous studies have suggested that therapeutic effects can be realized by targeting the β-arrestin signaling pathway of dopamine receptors, while overactivation of the G protein-dependent pathways leads to side effects, such as dyskinesias. Therefore, it is highly desirable to develop a D1R ligand that selectively regulates the β-arrestin pathway. Currently, most D1R agonists are signaling-balanced and stimulate both G protein and β-arrestin pathways, with a few reports of G protein biased ligands. However, identification and characterization of β-arrestin biased D1R agonists has been a challenge thus far. In this study, we implemented Gaussian accelerated molecular dynamics (GaMD) simulations to provide valuable computational insights into the possible underlying molecular mechanism of the different signaling properties of two catechol and two non-catechol D1R agonists that are either G protein biased or signaling-balanced. Dynamic network analysis further identified critical residues in the allosteric signaling network of D1R for each ligand at different conformational or binding states. Some of these residues are crucial for G protein or arrestin signals of GPCRs based on previous studies. Finally, we provided a molecular design strategy which can be utilized by medicinal chemists to develop potential β-arrestin biased D1R ligands. The proposed hypotheses are experimentally testable and can guide the development of safer and more effective medications for a variety of CNS disorders.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-023-00503-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-023-00503-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

多巴胺D1受体(D1R)是一种a类G蛋白偶联受体(GPCR),已成为治疗帕金森病(PD)等精神和神经疾病的有希望的药物靶点。以往的研究表明,靶向多巴胺受体的β-阻滞素信号通路可实现治疗效果,而G蛋白依赖通路的过度激活会导致副作用,如运动障碍。因此,开发一种选择性调节β-阻滞蛋白通路的D1R配体是非常必要的。目前,大多数D1R激动剂是信号平衡的,同时刺激G蛋白和β-阻滞蛋白途径,有少数报道称G蛋白偏倚配体。然而,迄今为止,β-抑制素偏倚的D1R激动剂的鉴定和表征一直是一个挑战。在这项研究中,我们实施了高斯加速分子动力学(GaMD)模拟,以提供有价值的计算见解,了解两种儿茶酚和两种非儿茶酚类D1R激动剂不同信号特性的潜在分子机制,这些激动剂要么是G蛋白偏倚,要么是信号平衡。动态网络分析进一步确定了每个配体在不同构象或结合状态下的D1R变构信号网络中的关键残基。根据以往的研究,其中一些残基对G蛋白或gpcr的阻滞蛋白信号至关重要。最后,我们提供了一种分子设计策略,可以被药物化学家用来开发潜在的β-阻滞蛋白偏倚的D1R配体。提出的假设是实验可验证的,可以指导开发更安全,更有效的药物治疗各种中枢神经系统疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational insights into ligand–induced G protein and β-arrestin signaling of the dopamine D1 receptor

The dopamine D1 receptor (D1R), is a class A G protein coupled-receptor (GPCR) which has been a promising drug target for psychiatric and neurological disorders such as Parkinson’s disease (PD). Previous studies have suggested that therapeutic effects can be realized by targeting the β-arrestin signaling pathway of dopamine receptors, while overactivation of the G protein-dependent pathways leads to side effects, such as dyskinesias. Therefore, it is highly desirable to develop a D1R ligand that selectively regulates the β-arrestin pathway. Currently, most D1R agonists are signaling-balanced and stimulate both G protein and β-arrestin pathways, with a few reports of G protein biased ligands. However, identification and characterization of β-arrestin biased D1R agonists has been a challenge thus far. In this study, we implemented Gaussian accelerated molecular dynamics (GaMD) simulations to provide valuable computational insights into the possible underlying molecular mechanism of the different signaling properties of two catechol and two non-catechol D1R agonists that are either G protein biased or signaling-balanced. Dynamic network analysis further identified critical residues in the allosteric signaling network of D1R for each ligand at different conformational or binding states. Some of these residues are crucial for G protein or arrestin signals of GPCRs based on previous studies. Finally, we provided a molecular design strategy which can be utilized by medicinal chemists to develop potential β-arrestin biased D1R ligands. The proposed hypotheses are experimentally testable and can guide the development of safer and more effective medications for a variety of CNS disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1