{"title":"表面活性介质涂层Inconel 718切削过程中加工工件表面温度场的预测","authors":"Qing-An Yin, Zhan-Qiang Liu, Bing Wang","doi":"10.1007/s40436-023-00445-1","DOIUrl":null,"url":null,"abstract":"<div><p>The heat generated and accumulated on the machined surface of an Inconel 718 workpiece causes thermal damage during the cutting process. Surface-active media with high thermal conductivity coated on the workpiece to be machined may have the potential to reduce the generation of cutting heat. In this study, a theoretical model for predicting the instantaneous machined surface temperature field is proposed for surface-active thermal conductive medium (SACM)-assisted cutting based on the finite element and Fourier heat transfer theories. Orthogonal cutting experiments were performed to verify the results predicted using the proposed surface-temperature field model. Three SACMs with various thermal conductivities were used to coat Inconel 718 surface to be machined. Thermocouples embedded into the workpiece were used to measure the cutting temperature at different points on the machined workpiece surface during the cutting process. The experimental results were in agreement with the predicted temperatures, and the maximum error between the experimental results and predicted temperatures was approximately 9.5%. The cutting temperature on the machined surface decreased with an increase in the thermal conductivity of the SACM. The graphene SACM with high thermal conductivity can effectively reduce the temperature from 542 °C to 402 °C, which corresponds to a reduction of approximately 26%. The temperature reduction due to SACM decreases with an increase in the distance between the temperature prediction point and machined workpiece surface. In conclusion, the cutting temperatures on the machined workpiece surface can be reduced by coating with SACM.\n</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"11 3","pages":"378 - 389"},"PeriodicalIF":4.2000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of temperature field in machined workpiece surface during the cutting of Inconel 718 coated with surface-active media\",\"authors\":\"Qing-An Yin, Zhan-Qiang Liu, Bing Wang\",\"doi\":\"10.1007/s40436-023-00445-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The heat generated and accumulated on the machined surface of an Inconel 718 workpiece causes thermal damage during the cutting process. Surface-active media with high thermal conductivity coated on the workpiece to be machined may have the potential to reduce the generation of cutting heat. In this study, a theoretical model for predicting the instantaneous machined surface temperature field is proposed for surface-active thermal conductive medium (SACM)-assisted cutting based on the finite element and Fourier heat transfer theories. Orthogonal cutting experiments were performed to verify the results predicted using the proposed surface-temperature field model. Three SACMs with various thermal conductivities were used to coat Inconel 718 surface to be machined. Thermocouples embedded into the workpiece were used to measure the cutting temperature at different points on the machined workpiece surface during the cutting process. The experimental results were in agreement with the predicted temperatures, and the maximum error between the experimental results and predicted temperatures was approximately 9.5%. The cutting temperature on the machined surface decreased with an increase in the thermal conductivity of the SACM. The graphene SACM with high thermal conductivity can effectively reduce the temperature from 542 °C to 402 °C, which corresponds to a reduction of approximately 26%. The temperature reduction due to SACM decreases with an increase in the distance between the temperature prediction point and machined workpiece surface. In conclusion, the cutting temperatures on the machined workpiece surface can be reduced by coating with SACM.\\n</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"11 3\",\"pages\":\"378 - 389\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-023-00445-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-023-00445-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Prediction of temperature field in machined workpiece surface during the cutting of Inconel 718 coated with surface-active media
The heat generated and accumulated on the machined surface of an Inconel 718 workpiece causes thermal damage during the cutting process. Surface-active media with high thermal conductivity coated on the workpiece to be machined may have the potential to reduce the generation of cutting heat. In this study, a theoretical model for predicting the instantaneous machined surface temperature field is proposed for surface-active thermal conductive medium (SACM)-assisted cutting based on the finite element and Fourier heat transfer theories. Orthogonal cutting experiments were performed to verify the results predicted using the proposed surface-temperature field model. Three SACMs with various thermal conductivities were used to coat Inconel 718 surface to be machined. Thermocouples embedded into the workpiece were used to measure the cutting temperature at different points on the machined workpiece surface during the cutting process. The experimental results were in agreement with the predicted temperatures, and the maximum error between the experimental results and predicted temperatures was approximately 9.5%. The cutting temperature on the machined surface decreased with an increase in the thermal conductivity of the SACM. The graphene SACM with high thermal conductivity can effectively reduce the temperature from 542 °C to 402 °C, which corresponds to a reduction of approximately 26%. The temperature reduction due to SACM decreases with an increase in the distance between the temperature prediction point and machined workpiece surface. In conclusion, the cutting temperatures on the machined workpiece surface can be reduced by coating with SACM.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.