带多边形塔的俯仰控制风力机气动性能研究

IF 1.3 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Wind and Structures Pub Date : 2021-07-01 DOI:10.12989/WAS.2021.33.1.087
Y. C. Kim, Y. Tamura
{"title":"带多边形塔的俯仰控制风力机气动性能研究","authors":"Y. C. Kim, Y. Tamura","doi":"10.12989/WAS.2021.33.1.087","DOIUrl":null,"url":null,"abstract":"Wind turbines are commonly used power generation systems around the world and their application is becoming increasingly widespread. Traditionally, they have been mounted on circular towers, but their recent upsizing has exposed weaknesses of these structures, including problems related to manufacturing and insufficient strength. Thus, the concept of site-assembled modular towers with polygonal cross-sections has been proposed, but their aerodynamic performances have not been properly investigated. In the present study, the aerodynamic performances of a wind turbine with seven polygonal towers were investigated. Wind tunnel tests have shown that the forces on the upper structure (rotor and nacelle) are larger than those on the tower, which makes the effect of cross-sectional shape of tower relatively small. Drag forces decrease with increasing number of sides of the tower, and lift forces on the square helical tower are quite small. For the power spectra, there are peaks in high reduced frequency for oblique wind directions at azimuth angles of 60° and 90°, which were considered to result from vortices that were formed and shed behind the blade in front of the tower.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of aerodynamic performance ofpitch-control wind turbine with polygonal towers\",\"authors\":\"Y. C. Kim, Y. Tamura\",\"doi\":\"10.12989/WAS.2021.33.1.087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind turbines are commonly used power generation systems around the world and their application is becoming increasingly widespread. Traditionally, they have been mounted on circular towers, but their recent upsizing has exposed weaknesses of these structures, including problems related to manufacturing and insufficient strength. Thus, the concept of site-assembled modular towers with polygonal cross-sections has been proposed, but their aerodynamic performances have not been properly investigated. In the present study, the aerodynamic performances of a wind turbine with seven polygonal towers were investigated. Wind tunnel tests have shown that the forces on the upper structure (rotor and nacelle) are larger than those on the tower, which makes the effect of cross-sectional shape of tower relatively small. Drag forces decrease with increasing number of sides of the tower, and lift forces on the square helical tower are quite small. For the power spectra, there are peaks in high reduced frequency for oblique wind directions at azimuth angles of 60° and 90°, which were considered to result from vortices that were formed and shed behind the blade in front of the tower.\",\"PeriodicalId\":51210,\"journal\":{\"name\":\"Wind and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/WAS.2021.33.1.087\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/WAS.2021.33.1.087","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

风力涡轮机是世界各地常用的发电系统,其应用越来越广泛。传统上,它们安装在圆形塔架上,但最近的升级暴露了这些结构的弱点,包括与制造和强度不足有关的问题。因此,已经提出了具有多边形横截面的现场组装模块化塔架的概念,但尚未对其空气动力学性能进行适当的研究。在本研究中,对具有七个多边形塔架的风力涡轮机的气动性能进行了研究。风洞试验表明,上部结构(转子和机舱)上的力大于塔架上的力,这使得塔架横截面形状的影响相对较小。阻力随着塔侧数的增加而减小,方形螺旋塔上的升力很小。对于功率谱,在方位角为60°和90°的斜风向下,存在高降低频率的峰值,这被认为是由于在塔前叶片后面形成并脱落的涡流造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of aerodynamic performance ofpitch-control wind turbine with polygonal towers
Wind turbines are commonly used power generation systems around the world and their application is becoming increasingly widespread. Traditionally, they have been mounted on circular towers, but their recent upsizing has exposed weaknesses of these structures, including problems related to manufacturing and insufficient strength. Thus, the concept of site-assembled modular towers with polygonal cross-sections has been proposed, but their aerodynamic performances have not been properly investigated. In the present study, the aerodynamic performances of a wind turbine with seven polygonal towers were investigated. Wind tunnel tests have shown that the forces on the upper structure (rotor and nacelle) are larger than those on the tower, which makes the effect of cross-sectional shape of tower relatively small. Drag forces decrease with increasing number of sides of the tower, and lift forces on the square helical tower are quite small. For the power spectra, there are peaks in high reduced frequency for oblique wind directions at azimuth angles of 60° and 90°, which were considered to result from vortices that were formed and shed behind the blade in front of the tower.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wind and Structures
Wind and Structures 工程技术-工程:土木
CiteScore
2.70
自引率
18.80%
发文量
0
审稿时长
>12 weeks
期刊介绍: The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted. The main theme of the Journal is the wind effects on structures. Areas covered by the journal include: Wind loads and structural response, Bluff-body aerodynamics, Computational method, Wind tunnel modeling, Local wind environment, Codes and regulations, Wind effects on large scale structures.
期刊最新文献
Challenges and Perspectives of Wind Energy Technology Responses of a Modular Floating Wind TLP of MarsVAWT Supporting a 10 MW Vertical Axis Wind Turbine Wind Power Forecasting in a Semi-Arid Region Based on Machine Learning Error Correction Scaling Challenges for Conical Plain Bearings as Wind Turbine Main Bearings Numerical Modeling and Application of Horizontal-Axis Wind Turbine Arrays in Large Wind Farms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1