用于大功率电子模块的Aln直接键合铜多层嵌入式三维歧管微通道散热器

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Packaging Pub Date : 2023-04-21 DOI:10.1115/1.4062384
Yujui Lin, Tiwei Wei, Wyatt Jason Moy, Hao Chen, M. Gupta, M. Degner, M. Asheghi, A. Mantooth, K. Goodson
{"title":"用于大功率电子模块的Aln直接键合铜多层嵌入式三维歧管微通道散热器","authors":"Yujui Lin, Tiwei Wei, Wyatt Jason Moy, Hao Chen, M. Gupta, M. Degner, M. Asheghi, A. Mantooth, K. Goodson","doi":"10.1115/1.4062384","DOIUrl":null,"url":null,"abstract":"\n Better thermal management is a key enabler of higher power density in traction inverter power modules. For the first time, we successfully fabricated and tested a microchannel with a 3D manifold cooler (MMC) using AlN-based Directed Bonded Copper (DBC) substrates. The microchannels (width ~300 μm and height ~450 μm) and 3D manifold fluidic passages (width ~300 μm and height ~600 μm) were fabricated in two DBC substrates using the femtosecond laser and subsequently bonded using transition liquid phase (TLP) bonding. In this study, the hydraulic and thermal performance of the 3D MMC is measured and validated with numerical simulation. The proposed 3D MMC is capable of removing heat at 600 W/cm2 with a 10 kPa pressured drop at the thermal thermal resistance of 0.2 cm2-K/W. The optimized designs via geometric and layout rearrangement were conducted, which indicates the pressure drop can be further reduced by 10× while maintaining the same thermal performance.","PeriodicalId":15663,"journal":{"name":"Journal of Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-level Embedded 3d Manifold Microchannel Heat Sink of Aln Direct Bonded Copper for the High-power Electronic Module\",\"authors\":\"Yujui Lin, Tiwei Wei, Wyatt Jason Moy, Hao Chen, M. Gupta, M. Degner, M. Asheghi, A. Mantooth, K. Goodson\",\"doi\":\"10.1115/1.4062384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Better thermal management is a key enabler of higher power density in traction inverter power modules. For the first time, we successfully fabricated and tested a microchannel with a 3D manifold cooler (MMC) using AlN-based Directed Bonded Copper (DBC) substrates. The microchannels (width ~300 μm and height ~450 μm) and 3D manifold fluidic passages (width ~300 μm and height ~600 μm) were fabricated in two DBC substrates using the femtosecond laser and subsequently bonded using transition liquid phase (TLP) bonding. In this study, the hydraulic and thermal performance of the 3D MMC is measured and validated with numerical simulation. The proposed 3D MMC is capable of removing heat at 600 W/cm2 with a 10 kPa pressured drop at the thermal thermal resistance of 0.2 cm2-K/W. The optimized designs via geometric and layout rearrangement were conducted, which indicates the pressure drop can be further reduced by 10× while maintaining the same thermal performance.\",\"PeriodicalId\":15663,\"journal\":{\"name\":\"Journal of Electronic Packaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Packaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062384\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Packaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062384","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

更好的热管理是牵引逆变器功率模块实现更高功率密度的关键因素。我们首次使用基于AlN的定向键合铜(DBC)衬底成功地制造并测试了具有3D歧管冷却器(MMC)的微通道。使用飞秒激光在两个DBC衬底上制备了微通道(宽度~300μm,高度~450μm)和3D歧管流体通道(宽度+300μm和高度~600μm),随后使用过渡液相(TLP)键合。在本研究中,测量了三维MMC的液压和热性能,并通过数值模拟进行了验证。所提出的3D MMC能够在0.2cm2-K/W的热阻下以10kPa的压降去除600W/cm2的热量。通过几何和布局重排进行了优化设计,表明在保持相同热性能的同时,压降可以进一步降低10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-level Embedded 3d Manifold Microchannel Heat Sink of Aln Direct Bonded Copper for the High-power Electronic Module
Better thermal management is a key enabler of higher power density in traction inverter power modules. For the first time, we successfully fabricated and tested a microchannel with a 3D manifold cooler (MMC) using AlN-based Directed Bonded Copper (DBC) substrates. The microchannels (width ~300 μm and height ~450 μm) and 3D manifold fluidic passages (width ~300 μm and height ~600 μm) were fabricated in two DBC substrates using the femtosecond laser and subsequently bonded using transition liquid phase (TLP) bonding. In this study, the hydraulic and thermal performance of the 3D MMC is measured and validated with numerical simulation. The proposed 3D MMC is capable of removing heat at 600 W/cm2 with a 10 kPa pressured drop at the thermal thermal resistance of 0.2 cm2-K/W. The optimized designs via geometric and layout rearrangement were conducted, which indicates the pressure drop can be further reduced by 10× while maintaining the same thermal performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Packaging
Journal of Electronic Packaging 工程技术-工程:电子与电气
CiteScore
4.90
自引率
6.20%
发文量
44
审稿时长
3 months
期刊介绍: The Journal of Electronic Packaging publishes papers that use experimental and theoretical (analytical and computer-aided) methods, approaches, and techniques to address and solve various mechanical, materials, and reliability problems encountered in the analysis, design, manufacturing, testing, and operation of electronic and photonics components, devices, and systems. Scope: Microsystems packaging; Systems integration; Flexible electronics; Materials with nano structures and in general small scale systems.
期刊最新文献
Simultaneous Characterization of Both Ctes and Thermal Warpages of Flip-Chip Packages with a Cap Using Strain Gauges Research Status and Progress On Non-Destructive Testing Methods for Defect Inspection of Microelectronic Packaging Effects of Thermal-Moisture Coupled Field On Delamination Behavior of Electronic Packaging Heat Dissipation Design Based On Topology Optimization And Auxiliary Materials Optimal Design of Thermal Cycling Reliability For PBGA Assembly via FEM and Taguchi Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1