生物炭对土壤蒸发和含水量的影响及其机理

IF 5.9 3区 环境科学与生态学 Q1 Environmental Science Environmental Sciences Europe Pub Date : 2023-08-15 DOI:10.1186/s12302-023-00776-7
Weiying Feng, Tengke Wang, Fang Yang, Rui Cen, Haiqing Liao, Zhongyi Qu
{"title":"生物炭对土壤蒸发和含水量的影响及其机理","authors":"Weiying Feng,&nbsp;Tengke Wang,&nbsp;Fang Yang,&nbsp;Rui Cen,&nbsp;Haiqing Liao,&nbsp;Zhongyi Qu","doi":"10.1186/s12302-023-00776-7","DOIUrl":null,"url":null,"abstract":"<div><p>High soil evaporation levels are a major contributor to loss of soil moisture in arid and semiarid regions globally. Therefore, it is important to use effective measures to slow the evaporation from farmland soils. We applied various amounts of straw biochar (BC) in a soil column experiment and a field experiment to study the influence of BC on soil evaporation and moisture content, respectively, to improve the water use efficiency of cultivated soil in arid areas. The addition of BC reduced soil evaporation and delayed water loss from the soil by evaporation. In the field experiment, cumulative evaporation in the treatments declined by 9.58% (Bo-10), 10.95% (Bo-30), and 4.2% (Bo-50) compared with that in the control group, demonstrating that 30 t/hm<sup>2</sup> BC is the most effective at suppressing soil evaporation. BC also delayed the time required for the soil moisture content to drop to field capacity and increased the upward transport of water from the deeper soil layers at night. Data from continuous monitoring of moisture content for 3 days during each growth period revealed that the increases in moisture replenishment were 18.52–79.62% at the seedling stage, 55.81–202.38% at the jointing stage, 270.83–587.5% at the tassel stage, and 6.66–61.64% at the maturation stage; hence, BC was shown to work best at the tassel stage.</p></div>","PeriodicalId":54293,"journal":{"name":"Environmental Sciences Europe","volume":"35 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00776-7","citationCount":"1","resultStr":"{\"title\":\"Effects of biochar on soil evaporation and moisture content and the associated mechanisms\",\"authors\":\"Weiying Feng,&nbsp;Tengke Wang,&nbsp;Fang Yang,&nbsp;Rui Cen,&nbsp;Haiqing Liao,&nbsp;Zhongyi Qu\",\"doi\":\"10.1186/s12302-023-00776-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High soil evaporation levels are a major contributor to loss of soil moisture in arid and semiarid regions globally. Therefore, it is important to use effective measures to slow the evaporation from farmland soils. We applied various amounts of straw biochar (BC) in a soil column experiment and a field experiment to study the influence of BC on soil evaporation and moisture content, respectively, to improve the water use efficiency of cultivated soil in arid areas. The addition of BC reduced soil evaporation and delayed water loss from the soil by evaporation. In the field experiment, cumulative evaporation in the treatments declined by 9.58% (Bo-10), 10.95% (Bo-30), and 4.2% (Bo-50) compared with that in the control group, demonstrating that 30 t/hm<sup>2</sup> BC is the most effective at suppressing soil evaporation. BC also delayed the time required for the soil moisture content to drop to field capacity and increased the upward transport of water from the deeper soil layers at night. Data from continuous monitoring of moisture content for 3 days during each growth period revealed that the increases in moisture replenishment were 18.52–79.62% at the seedling stage, 55.81–202.38% at the jointing stage, 270.83–587.5% at the tassel stage, and 6.66–61.64% at the maturation stage; hence, BC was shown to work best at the tassel stage.</p></div>\",\"PeriodicalId\":54293,\"journal\":{\"name\":\"Environmental Sciences Europe\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00776-7\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences Europe\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12302-023-00776-7\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-023-00776-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

摘要

高土壤蒸发水平是全球干旱和半干旱地区土壤水分流失的主要原因。因此,采取有效措施减缓农田土壤的蒸发十分重要。为了提高干旱区耕地土壤水分利用效率,在土壤柱试验和田间试验中分别施用不同量的秸秆生物炭(BC),研究了秸秆生物炭对土壤蒸发和含水量的影响。添加BC减少了土壤蒸发,延缓了土壤水分蒸发损失。在田间试验中,与对照组相比,各处理的累积蒸发量分别下降了9.58% (Bo-10)、10.95% (Bo-30)和4.2% (Bo-50),说明30 t/hm2 BC对土壤蒸发量的抑制效果最好。BC还延迟了土壤含水量下降到田间容量所需的时间,增加了夜间深层土壤向上输送的水分。各生育期连续监测3 d的水分含量数据表明,苗期补水量增加18.52 ~ 79.62%,拔节期增加55.81 ~ 202.38%,抽穗期增加270.83 ~ 587.5%,成熟期增加6.66 ~ 61.64%;因此,BC在雄穗期表现最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of biochar on soil evaporation and moisture content and the associated mechanisms

High soil evaporation levels are a major contributor to loss of soil moisture in arid and semiarid regions globally. Therefore, it is important to use effective measures to slow the evaporation from farmland soils. We applied various amounts of straw biochar (BC) in a soil column experiment and a field experiment to study the influence of BC on soil evaporation and moisture content, respectively, to improve the water use efficiency of cultivated soil in arid areas. The addition of BC reduced soil evaporation and delayed water loss from the soil by evaporation. In the field experiment, cumulative evaporation in the treatments declined by 9.58% (Bo-10), 10.95% (Bo-30), and 4.2% (Bo-50) compared with that in the control group, demonstrating that 30 t/hm2 BC is the most effective at suppressing soil evaporation. BC also delayed the time required for the soil moisture content to drop to field capacity and increased the upward transport of water from the deeper soil layers at night. Data from continuous monitoring of moisture content for 3 days during each growth period revealed that the increases in moisture replenishment were 18.52–79.62% at the seedling stage, 55.81–202.38% at the jointing stage, 270.83–587.5% at the tassel stage, and 6.66–61.64% at the maturation stage; hence, BC was shown to work best at the tassel stage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Sciences Europe
Environmental Sciences Europe Environmental Science-Pollution
CiteScore
9.20
自引率
1.70%
发文量
110
审稿时长
13 weeks
期刊介绍: ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation. ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation. ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation. Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues. Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.
期刊最新文献
Towards the global plastic treaty: a clue to the complexity of plastics in practice Chronic toxicity testing including transcriptomics-based molecular profiling in Cloeon dipterum Environmental impact of quarrying on air quality in Ebonyi state, Nigeria How does high-speed railway affect green technology innovation? A perspective of high-quality human capital Management of links of interest in European Union expertise authorities dealing with plant protection products: comparative analysis and recommendations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1