{"title":"利用微波对人类牙齿进行无损检测:最新进展","authors":"Jinjin Qi, Zhen Li","doi":"10.2478/jee-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract Tooth diseases including dental caries, periodontitis and cracks have been public health problems globally. How to detect them at the early stage and perform thorough diagnosis are critical for the treatment. The diseases can be viewed as defects from the perspective of non-destructive testing. Such a defect can affect the material properties (e.g., optical, chemical, mechanical, acoustic, density and dielectric properties). A non-destructive testing method is commonly developed to sense the change of one particular property. Microwave testing is one that is focused on the dielectric properties. In recent years, this technique has received increased attention in dentistry. Here, the dielectric properties of human teeth are presented first, and the measurement methods are addressed. Then, the research progress on the detection of teeth over the last decade is reviewed, identifying achievements and challenges. Finally, the research trends are outlined, including electromagnetic simulation, radio frequency identification and heating-based techniques.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"74 1","pages":"40 - 47"},"PeriodicalIF":1.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-destructive testing of human teeth using microwaves: a state-of-the-art review\",\"authors\":\"Jinjin Qi, Zhen Li\",\"doi\":\"10.2478/jee-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Tooth diseases including dental caries, periodontitis and cracks have been public health problems globally. How to detect them at the early stage and perform thorough diagnosis are critical for the treatment. The diseases can be viewed as defects from the perspective of non-destructive testing. Such a defect can affect the material properties (e.g., optical, chemical, mechanical, acoustic, density and dielectric properties). A non-destructive testing method is commonly developed to sense the change of one particular property. Microwave testing is one that is focused on the dielectric properties. In recent years, this technique has received increased attention in dentistry. Here, the dielectric properties of human teeth are presented first, and the measurement methods are addressed. Then, the research progress on the detection of teeth over the last decade is reviewed, identifying achievements and challenges. Finally, the research trends are outlined, including electromagnetic simulation, radio frequency identification and heating-based techniques.\",\"PeriodicalId\":15661,\"journal\":{\"name\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"volume\":\"74 1\",\"pages\":\"40 - 47\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/jee-2023-0005\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/jee-2023-0005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Non-destructive testing of human teeth using microwaves: a state-of-the-art review
Abstract Tooth diseases including dental caries, periodontitis and cracks have been public health problems globally. How to detect them at the early stage and perform thorough diagnosis are critical for the treatment. The diseases can be viewed as defects from the perspective of non-destructive testing. Such a defect can affect the material properties (e.g., optical, chemical, mechanical, acoustic, density and dielectric properties). A non-destructive testing method is commonly developed to sense the change of one particular property. Microwave testing is one that is focused on the dielectric properties. In recent years, this technique has received increased attention in dentistry. Here, the dielectric properties of human teeth are presented first, and the measurement methods are addressed. Then, the research progress on the detection of teeth over the last decade is reviewed, identifying achievements and challenges. Finally, the research trends are outlined, including electromagnetic simulation, radio frequency identification and heating-based techniques.
期刊介绍:
The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising.
-Automation and Control-
Computer Engineering-
Electronics and Microelectronics-
Electro-physics and Electromagnetism-
Material Science-
Measurement and Metrology-
Power Engineering and Energy Conversion-
Signal Processing and Telecommunications