桩支撑土工合成材料加筋路堤的简化分析方法及设计参数的影响意义分析

IF 0.5 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL Acta Geotechnica Slovenica Pub Date : 2018-06-01 DOI:10.18690/ACTAGEOTECHSLOV.15.1.55-75.2018
Liu Feicheng, Zhang Jianjing, Y. Shijie, Cao Licong
{"title":"桩支撑土工合成材料加筋路堤的简化分析方法及设计参数的影响意义分析","authors":"Liu Feicheng, Zhang Jianjing, Y. Shijie, Cao Licong","doi":"10.18690/ACTAGEOTECHSLOV.15.1.55-75.2018","DOIUrl":null,"url":null,"abstract":"A simplified method for evaluating a pile-supported embankment reinforced with geosynthetic (PGRS embankment) is proposed in this paper. The method takes into account not only the arching effect, the membrane effect of the deflected geosynthetic, and the subsoil reaction, but also the pile head settlement, which makes the method applicable for floating piles, as well as piles seated on a firm soil layer. The settlement of the subsoil surface is considered to consist of two parts: (a) the settlement of the subsoil surface equals that of the pile cap with no deformation in geosynthetic yet; (b) the subsoil surface subsides along with the geosynthetic deforming, and the deflected geosynthetic being considered as catenary shaped. The formula for the maximum differential settlement between the subsoil surface and the piles is worked out by analyzing the force equilibrium of the geosynthetic and the stress-strain relationship of the geosynthetic at the edge of the pile cap. The comparison of the calculated results with the observed data and the six current analytical methods has been implemented to verify the proposed method. The influence of the tensile stiffness of the geosynthetic, compression modulus of soft soil, soft soil thickness, embankment height, internal friction angle of the embankment fill and the pile spacing on the subsoil reaction, the stress concentration ratio (SCR) and the tension of the geosynthetic are investigated using the proposed method. The influence significance of these factors has been investigated using the evaluation theory of binary variance analysis for the non-repeatability tests, which helps optimize the design of the PGRS embankment.","PeriodicalId":50897,"journal":{"name":"Acta Geotechnica Slovenica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simplified method to analyze pile-supported and geosynthetic-reinforced embankments and the influence significance analysis of the design parameters\",\"authors\":\"Liu Feicheng, Zhang Jianjing, Y. Shijie, Cao Licong\",\"doi\":\"10.18690/ACTAGEOTECHSLOV.15.1.55-75.2018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simplified method for evaluating a pile-supported embankment reinforced with geosynthetic (PGRS embankment) is proposed in this paper. The method takes into account not only the arching effect, the membrane effect of the deflected geosynthetic, and the subsoil reaction, but also the pile head settlement, which makes the method applicable for floating piles, as well as piles seated on a firm soil layer. The settlement of the subsoil surface is considered to consist of two parts: (a) the settlement of the subsoil surface equals that of the pile cap with no deformation in geosynthetic yet; (b) the subsoil surface subsides along with the geosynthetic deforming, and the deflected geosynthetic being considered as catenary shaped. The formula for the maximum differential settlement between the subsoil surface and the piles is worked out by analyzing the force equilibrium of the geosynthetic and the stress-strain relationship of the geosynthetic at the edge of the pile cap. The comparison of the calculated results with the observed data and the six current analytical methods has been implemented to verify the proposed method. The influence of the tensile stiffness of the geosynthetic, compression modulus of soft soil, soft soil thickness, embankment height, internal friction angle of the embankment fill and the pile spacing on the subsoil reaction, the stress concentration ratio (SCR) and the tension of the geosynthetic are investigated using the proposed method. The influence significance of these factors has been investigated using the evaluation theory of binary variance analysis for the non-repeatability tests, which helps optimize the design of the PGRS embankment.\",\"PeriodicalId\":50897,\"journal\":{\"name\":\"Acta Geotechnica Slovenica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica Slovenica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.18690/ACTAGEOTECHSLOV.15.1.55-75.2018\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica Slovenica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.18690/ACTAGEOTECHSLOV.15.1.55-75.2018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种简化的评价土工合成材料桩承路堤(PGRS)的方法。该方法不仅考虑了拱效应、偏转土工合成材料的膜效应和底土反力,而且考虑了桩头沉降,适用于浮桩和位于牢固土层上的桩。地基表面的沉降考虑由两部分组成:(a)地基表面的沉降等于桩承台的沉降,且在土工合成过程中尚未发生变形;(b)随着土工合成材料的变形,底土表面下沉,土工合成材料的变形被认为是悬链线形状。通过分析土工合成材料的受力平衡和承台边缘土工合成材料的应力-应变关系,推导出桩与地基表面最大沉降差的计算公式,并将计算结果与实测数据和现有的6种分析方法进行了比较,验证了所提方法的正确性。采用该方法研究了土工合成材料的抗拉刚度、软土压缩模量、软土厚度、路堤高度、路堤填方内摩擦角和桩间距对地基反力、应力集中比(SCR)和土工合成材料张力的影响。运用二元方差分析评价理论对非重复性试验进行了影响显著性研究,为PGRS路堤的优化设计提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simplified method to analyze pile-supported and geosynthetic-reinforced embankments and the influence significance analysis of the design parameters
A simplified method for evaluating a pile-supported embankment reinforced with geosynthetic (PGRS embankment) is proposed in this paper. The method takes into account not only the arching effect, the membrane effect of the deflected geosynthetic, and the subsoil reaction, but also the pile head settlement, which makes the method applicable for floating piles, as well as piles seated on a firm soil layer. The settlement of the subsoil surface is considered to consist of two parts: (a) the settlement of the subsoil surface equals that of the pile cap with no deformation in geosynthetic yet; (b) the subsoil surface subsides along with the geosynthetic deforming, and the deflected geosynthetic being considered as catenary shaped. The formula for the maximum differential settlement between the subsoil surface and the piles is worked out by analyzing the force equilibrium of the geosynthetic and the stress-strain relationship of the geosynthetic at the edge of the pile cap. The comparison of the calculated results with the observed data and the six current analytical methods has been implemented to verify the proposed method. The influence of the tensile stiffness of the geosynthetic, compression modulus of soft soil, soft soil thickness, embankment height, internal friction angle of the embankment fill and the pile spacing on the subsoil reaction, the stress concentration ratio (SCR) and the tension of the geosynthetic are investigated using the proposed method. The influence significance of these factors has been investigated using the evaluation theory of binary variance analysis for the non-repeatability tests, which helps optimize the design of the PGRS embankment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geotechnica Slovenica
Acta Geotechnica Slovenica 地学-工程:地质
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: ACTA GEOTECHNICA SLOVENICA aims to play an important role in publishing high-quality, theoretical papers from important and emerging areas that will have a lasting impact on fundamental and practical aspects of geomechanics and geotechnical engineering. ACTA GEOTECHNICA SLOVENICA publishes papers from the following areas: soil and rock mechanics, engineering geology, environmental geotechnics, geosynthetic, geotechnical structures, numerical and analytical methods, computer modelling, optimization of geotechnical structures, field and laboratory testing. The journal is published twice a year.
期刊最新文献
Diametric splitting tests on unsaturated expansive soil with different dry densities based on particle image velocimetry technique A framework for the use of reliability methods in deep urban excavations analysis Threshold silt content dependency on particle morphology (shape and size) of granular materials: review with new evidence Small scale model test on lateral behaviors of pile group in loose silica sand Improved general slice method of limit equilibrium for slope stability analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1