原油价格的单变量预测方法研究

IF 2 Q3 BUSINESS Maritime Business Review Pub Date : 2021-12-20 DOI:10.1108/mabr-09-2021-0076
Mei-Ling Cheng, C. Chu, Hsiu-Li Hsu
{"title":"原油价格的单变量预测方法研究","authors":"Mei-Ling Cheng, C. Chu, Hsiu-Li Hsu","doi":"10.1108/mabr-09-2021-0076","DOIUrl":null,"url":null,"abstract":"PurposeThis paper aims to compare different univariate forecasting methods to provide a more accurate short-term forecasting model on the crude oil price for rendering a reference to manages.Design/methodology/approachSix different univariate methods, namely the classical decomposition model, the trigonometric regression model, the regression model with seasonal dummy variables, the grey forecast, the hybrid grey model and the seasonal autoregressive integrated moving average (SARIMA), have been used.FindingsThe authors found that the grey forecast is a reliable forecasting method for crude oil prices.Originality/valueThe contribution of this research study is using a small size of data and comparing the forecasting results of the six univariate methods. Three commonly used evaluation criteria, mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percent error (MAPE), were adopted to evaluate the model performance. The outcome of this work can help predict the crude oil price.","PeriodicalId":43865,"journal":{"name":"Maritime Business Review","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A study of univariate forecasting methods for crude oil price\",\"authors\":\"Mei-Ling Cheng, C. Chu, Hsiu-Li Hsu\",\"doi\":\"10.1108/mabr-09-2021-0076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis paper aims to compare different univariate forecasting methods to provide a more accurate short-term forecasting model on the crude oil price for rendering a reference to manages.Design/methodology/approachSix different univariate methods, namely the classical decomposition model, the trigonometric regression model, the regression model with seasonal dummy variables, the grey forecast, the hybrid grey model and the seasonal autoregressive integrated moving average (SARIMA), have been used.FindingsThe authors found that the grey forecast is a reliable forecasting method for crude oil prices.Originality/valueThe contribution of this research study is using a small size of data and comparing the forecasting results of the six univariate methods. Three commonly used evaluation criteria, mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percent error (MAPE), were adopted to evaluate the model performance. The outcome of this work can help predict the crude oil price.\",\"PeriodicalId\":43865,\"journal\":{\"name\":\"Maritime Business Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maritime Business Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/mabr-09-2021-0076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maritime Business Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/mabr-09-2021-0076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 1

摘要

目的比较不同的单变量预测方法,为原油价格的短期预测提供更准确的模型,为管理者提供参考。设计/方法/方法采用了经典分解模型、三角回归模型、季节性虚拟变量回归模型、灰色预测模型、混合灰色模型和季节性自回归综合移动平均(SARIMA)等6种不同的单变量回归方法。结果灰色预测是一种可靠的原油价格预测方法。独创性/价值本研究的贡献在于使用小数据量,并比较了六种单变量方法的预测结果。采用平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)三个常用的评价标准来评价模型的性能。研究结果对原油价格的预测具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study of univariate forecasting methods for crude oil price
PurposeThis paper aims to compare different univariate forecasting methods to provide a more accurate short-term forecasting model on the crude oil price for rendering a reference to manages.Design/methodology/approachSix different univariate methods, namely the classical decomposition model, the trigonometric regression model, the regression model with seasonal dummy variables, the grey forecast, the hybrid grey model and the seasonal autoregressive integrated moving average (SARIMA), have been used.FindingsThe authors found that the grey forecast is a reliable forecasting method for crude oil prices.Originality/valueThe contribution of this research study is using a small size of data and comparing the forecasting results of the six univariate methods. Three commonly used evaluation criteria, mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percent error (MAPE), were adopted to evaluate the model performance. The outcome of this work can help predict the crude oil price.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
19
期刊最新文献
Predictive modelling in the shipping industry: analysis from supply and demand sides Electric tugboat deployment in maritime transportation: detailed analysis of advantages and disadvantages Discovering supply chain operation towards sustainability using machine learning and DES techniques: a case study in Vietnam seafood Maritime logistics and digital transformation with big data: review and research trend Assessing risk dimensions in dry port projects: prioritization, interdependence and heterogeneity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1