船舶上部结构伸缩缝疲劳评价

IF 0.7 4区 工程技术 Q4 ENGINEERING, MARINE International Journal of Maritime Engineering Pub Date : 2021-12-13 DOI:10.5750/ijme.v155ia4.910
S. Petinov, R. Guchinsky
{"title":"船舶上部结构伸缩缝疲劳评价","authors":"S. Petinov, R. Guchinsky","doi":"10.5750/ijme.v155ia4.910","DOIUrl":null,"url":null,"abstract":"Despite the long history of application of subdivided superstructures and deckhouses, and efforts of ship designers and researchers a sensible solution in design of reliable details at the cut endings was not found yet. It may be explained as consequence of controversial requirements in design of the cut endings. \nFatigue design of the superstructure details is addressed to solution of the problem. Presented is an example of fatigue design of the cut ending in a fast ship superstructure based on application of modified «Strain-Life» criterion for fatigue and subsequent approach which utilizes Neuber’s formula and material cyclic properties. To realize the approach a procedure of the long-term stress distribution transformation to the block-type format is developed. Efficiency of the developed technique is illustrated by comparing the results with those of application standard S-N criteria based techniques. The results of analysis allowed selection of the expansion joint detail of the superstructure geometry and construction procedure providing necessary reliability.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FATIGUE ASSESSMENT OF SHIP SUPERSTRUCTURE AT EXPANSION JOINT\",\"authors\":\"S. Petinov, R. Guchinsky\",\"doi\":\"10.5750/ijme.v155ia4.910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the long history of application of subdivided superstructures and deckhouses, and efforts of ship designers and researchers a sensible solution in design of reliable details at the cut endings was not found yet. It may be explained as consequence of controversial requirements in design of the cut endings. \\nFatigue design of the superstructure details is addressed to solution of the problem. Presented is an example of fatigue design of the cut ending in a fast ship superstructure based on application of modified «Strain-Life» criterion for fatigue and subsequent approach which utilizes Neuber’s formula and material cyclic properties. To realize the approach a procedure of the long-term stress distribution transformation to the block-type format is developed. Efficiency of the developed technique is illustrated by comparing the results with those of application standard S-N criteria based techniques. The results of analysis allowed selection of the expansion joint detail of the superstructure geometry and construction procedure providing necessary reliability.\",\"PeriodicalId\":50313,\"journal\":{\"name\":\"International Journal of Maritime Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Maritime Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5750/ijme.v155ia4.910\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Maritime Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5750/ijme.v155ia4.910","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

尽管细分上层建筑和甲板室的应用历史悠久,船舶设计人员和研究人员也做出了努力,但在切割末端可靠细节的设计上仍未找到合理的解决方案。这可以解释为切割末端设计中有争议的要求的结果。为解决这一问题,对上部结构进行了详细的疲劳设计。本文给出了一个基于修正的“应变-寿命”疲劳准则和利用Neuber公式和材料循环特性的后续方法的快速船舶上部结构截尾疲劳设计实例。为了实现这一方法,开发了将长期应力分布转换为块型格式的程序。通过与应用标准S-N准则技术的结果比较,说明了该技术的有效性。分析结果为上部结构几何形状和施工程序的伸缩缝细节选择提供了必要的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FATIGUE ASSESSMENT OF SHIP SUPERSTRUCTURE AT EXPANSION JOINT
Despite the long history of application of subdivided superstructures and deckhouses, and efforts of ship designers and researchers a sensible solution in design of reliable details at the cut endings was not found yet. It may be explained as consequence of controversial requirements in design of the cut endings. Fatigue design of the superstructure details is addressed to solution of the problem. Presented is an example of fatigue design of the cut ending in a fast ship superstructure based on application of modified «Strain-Life» criterion for fatigue and subsequent approach which utilizes Neuber’s formula and material cyclic properties. To realize the approach a procedure of the long-term stress distribution transformation to the block-type format is developed. Efficiency of the developed technique is illustrated by comparing the results with those of application standard S-N criteria based techniques. The results of analysis allowed selection of the expansion joint detail of the superstructure geometry and construction procedure providing necessary reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: The International Journal of Maritime Engineering (IJME) provides a forum for the reporting and discussion on technical and scientific issues associated with the design and construction of commercial marine vessels . Contributions in the form of papers and notes, together with discussion on published papers are welcomed.
期刊最新文献
SEAFARER SELECTION FOR SUSTAINABLE SHIPPING: CASE STUDY FOR TURKEY VOYAGE SPEED OPTIMIZATION USING GENETIC ALGORITHM METHODOLOGY APPLIED TO STUDY WATER MIST AS AN INFRARED SIGNATURE SUPPRESSOR IN MARINE GAS TURBINES EXPERIMENTAL STUDY OF A VARIABLE BUOYANCY SYSTEM FOR LOW DEPTH OPERATION AN APPLICATION OF AGENT-BASED TRAFFIC FLOW MODEL FOR MARITIME SAFETY MANAGEMENT EVALUATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1