一个广泛的调查流动调节器在一个fi-fi监视器

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE Brodogradnja Pub Date : 2022-10-01 DOI:10.21278/brod73408
Ahmet Bilir, Ali Doğrul, N. Vardar
{"title":"一个广泛的调查流动调节器在一个fi-fi监视器","authors":"Ahmet Bilir, Ali Doğrul, N. Vardar","doi":"10.21278/brod73408","DOIUrl":null,"url":null,"abstract":"As it is known, to provide fire protection for any type of surface vessel, external fire-fighting (EFF) systems have been commonly used for decades as well as in coastal regions. These types of systems exist on several types of vessels such as fire-fighting ships, tugboats, supply vessels and naval vessels. Flow conditioners can be used in the EFF systems to provide better performance by regulating the flow inside the fi-fi monitor. In the present study, a fire-fighting (fi-fi) monitor was designed and different flow conditioners were implemented into the fi-fi monitor. A unique flow conditioner was designed in addition to the recommended ones by ISO 5167-3 in order to improve the performance of the flow conditioner in terms of head ratio and flow rate. A commercial computational fluid dynamics (CFD) solver was used to investigate the performance of the different flow conditioners. Before comparing the numerical results of different flow conditioners, the numerical model was validated with the experimental data and verified with appropriate methods. The results showed that the unique flow conditioner successfully regulates the streamlines and it has better performance than the recommended ones by ISO 5167-3 in terms of flow rate and head ratio. As the last part of the study, the effect of unique flow conditioner length was investigated and the best length was determined.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN EXTENSIVE INVESTIGATION OF FLOW CONDITIONERS INSIDE A FI-FI MONITOR\",\"authors\":\"Ahmet Bilir, Ali Doğrul, N. Vardar\",\"doi\":\"10.21278/brod73408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As it is known, to provide fire protection for any type of surface vessel, external fire-fighting (EFF) systems have been commonly used for decades as well as in coastal regions. These types of systems exist on several types of vessels such as fire-fighting ships, tugboats, supply vessels and naval vessels. Flow conditioners can be used in the EFF systems to provide better performance by regulating the flow inside the fi-fi monitor. In the present study, a fire-fighting (fi-fi) monitor was designed and different flow conditioners were implemented into the fi-fi monitor. A unique flow conditioner was designed in addition to the recommended ones by ISO 5167-3 in order to improve the performance of the flow conditioner in terms of head ratio and flow rate. A commercial computational fluid dynamics (CFD) solver was used to investigate the performance of the different flow conditioners. Before comparing the numerical results of different flow conditioners, the numerical model was validated with the experimental data and verified with appropriate methods. The results showed that the unique flow conditioner successfully regulates the streamlines and it has better performance than the recommended ones by ISO 5167-3 in terms of flow rate and head ratio. As the last part of the study, the effect of unique flow conditioner length was investigated and the best length was determined.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod73408\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod73408","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,为了为任何类型的水面舰艇提供防火保护,外部消防(EFF)系统已经普遍使用了几十年,在沿海地区也是如此。这些类型的系统存在于几种类型的船舶上,如消防船、拖船、补给船和海军舰艇。流量调节器可用于EFF系统,通过调节fi-fi监视器内的流量来提供更好的性能。本研究设计了一种消防(fi-fi)监视器,并在该监视器中安装了不同的流量调节器。在ISO 5167-3推荐的流量调节剂基础上,设计了一种独特的流量调节剂,以提高流量调节剂在水头比和流量方面的性能。利用商业计算流体动力学(CFD)求解器对不同的气流调节器的性能进行了研究。在比较不同流量调节器的数值结果之前,将数值模型与实验数据进行了验证,并采用相应的方法进行了验证。结果表明,该独特的流量调节剂对流线的调节效果良好,在流量和水头比方面优于ISO 5167-3推荐的调节剂。作为研究的最后一部分,研究了不同流量调节剂长度的影响,并确定了最佳长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AN EXTENSIVE INVESTIGATION OF FLOW CONDITIONERS INSIDE A FI-FI MONITOR
As it is known, to provide fire protection for any type of surface vessel, external fire-fighting (EFF) systems have been commonly used for decades as well as in coastal regions. These types of systems exist on several types of vessels such as fire-fighting ships, tugboats, supply vessels and naval vessels. Flow conditioners can be used in the EFF systems to provide better performance by regulating the flow inside the fi-fi monitor. In the present study, a fire-fighting (fi-fi) monitor was designed and different flow conditioners were implemented into the fi-fi monitor. A unique flow conditioner was designed in addition to the recommended ones by ISO 5167-3 in order to improve the performance of the flow conditioner in terms of head ratio and flow rate. A commercial computational fluid dynamics (CFD) solver was used to investigate the performance of the different flow conditioners. Before comparing the numerical results of different flow conditioners, the numerical model was validated with the experimental data and verified with appropriate methods. The results showed that the unique flow conditioner successfully regulates the streamlines and it has better performance than the recommended ones by ISO 5167-3 in terms of flow rate and head ratio. As the last part of the study, the effect of unique flow conditioner length was investigated and the best length was determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
期刊最新文献
Application of an offline grey box method for predicting the manoeuvring performance Four-quadrant propeller hydrodynamic performance mapping for improving ship motion predictions Optimization of exhaust ejector with lobed nozzle for marine gas turbine Control method for the ship track and speed in curved channels Research on temperature distribution in container ship with Type-B LNG fuel tank based on CFD and analytical method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1