{"title":"国内外葡萄品种酵母菌可吸收氮状况的调查:品种和气候的影响","authors":"E. Bouloumpasi, A. Skendi, Evangelos H. Soufleros","doi":"10.3390/fermentation9080773","DOIUrl":null,"url":null,"abstract":"Yeast assimilable nitrogen (YAN), besides the oenological parameters (sugar content, titratable acidity, and pH) in grape musts of sixteen native and international varieties of Vitis vinifera cultivated in six regions of Northern Greece, was assessed in the frame of the present study. Low levels of YAN are frequently thought to be the cause of problematic fermentations and originate significant changes in the organoleptic aspects of the finished product. The objective of this multi-variety study was to assess factors affecting the YAN amount and composition in technologically mature grapes and, therefore, to evaluate the necessity of YAN supplementation with ammonium salts in musts across different native and international grape varieties. Free amino nitrogen was measured colorimetrically, ammoniacal nitrogen was measured enzymatically, and their values for each must sample were summed to obtain the total amount of YAN. Statistical analysis was carried out including principal component analysis (PCA) to discover relationships among must samples and the parameters studied. PCA analysis classified samples depending on grape varieties and region of origin, bringing knowledge about native and international cultivars of great commercial interest. Moreover, these findings could help to understand how commercial varieties can behave in different climates in the climate change context.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Survey on Yeast Assimilable Nitrogen Status of Musts from Native and International Grape Varieties: Effect of Variety and Climate\",\"authors\":\"E. Bouloumpasi, A. Skendi, Evangelos H. Soufleros\",\"doi\":\"10.3390/fermentation9080773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yeast assimilable nitrogen (YAN), besides the oenological parameters (sugar content, titratable acidity, and pH) in grape musts of sixteen native and international varieties of Vitis vinifera cultivated in six regions of Northern Greece, was assessed in the frame of the present study. Low levels of YAN are frequently thought to be the cause of problematic fermentations and originate significant changes in the organoleptic aspects of the finished product. The objective of this multi-variety study was to assess factors affecting the YAN amount and composition in technologically mature grapes and, therefore, to evaluate the necessity of YAN supplementation with ammonium salts in musts across different native and international grape varieties. Free amino nitrogen was measured colorimetrically, ammoniacal nitrogen was measured enzymatically, and their values for each must sample were summed to obtain the total amount of YAN. Statistical analysis was carried out including principal component analysis (PCA) to discover relationships among must samples and the parameters studied. PCA analysis classified samples depending on grape varieties and region of origin, bringing knowledge about native and international cultivars of great commercial interest. Moreover, these findings could help to understand how commercial varieties can behave in different climates in the climate change context.\",\"PeriodicalId\":48535,\"journal\":{\"name\":\"Fermentation-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/fermentation9080773\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fermentation9080773","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Survey on Yeast Assimilable Nitrogen Status of Musts from Native and International Grape Varieties: Effect of Variety and Climate
Yeast assimilable nitrogen (YAN), besides the oenological parameters (sugar content, titratable acidity, and pH) in grape musts of sixteen native and international varieties of Vitis vinifera cultivated in six regions of Northern Greece, was assessed in the frame of the present study. Low levels of YAN are frequently thought to be the cause of problematic fermentations and originate significant changes in the organoleptic aspects of the finished product. The objective of this multi-variety study was to assess factors affecting the YAN amount and composition in technologically mature grapes and, therefore, to evaluate the necessity of YAN supplementation with ammonium salts in musts across different native and international grape varieties. Free amino nitrogen was measured colorimetrically, ammoniacal nitrogen was measured enzymatically, and their values for each must sample were summed to obtain the total amount of YAN. Statistical analysis was carried out including principal component analysis (PCA) to discover relationships among must samples and the parameters studied. PCA analysis classified samples depending on grape varieties and region of origin, bringing knowledge about native and international cultivars of great commercial interest. Moreover, these findings could help to understand how commercial varieties can behave in different climates in the climate change context.