{"title":"利用双频多GNSS观测进行精确点定位的性能评估","authors":"Jabir Shabbir Malik","doi":"10.2478/arsa-2020-0011","DOIUrl":null,"url":null,"abstract":"Abstract In addition to GPS and GLONASS constellation, the number of (Global Navigation Satellite System) GNSS satellites are increasing, it is now possible to evaluate and analyze the position accuracy with multi GNSS constellation. In this paper, statistical assessment of static Precise Point Positioning (PPP) using GPS, GLONASS, dual system GPS/GLONASS, three system GPS/GLONASS/Galileo, GPS/GLONASS/BeiDou and multi system GPS/GLONASS/Galileo/BeiDou PPP combinations is evaluated. Observation data of seven whole days from seven IGS multi GNSS experiment (MGEX) stations is used for analysis. Position accuracy and convergence time is analyzed. Results show that the GPS/GLONASS positioning accuracy increases over GPS PPP. Standard deviations (STDs) of position errors for GPS PPP are 4.63, 3.00 and 6.96 cm in east, north and up components while STDs for GPS/GLONASS PPP are 4.10, 3.42 and 6.50 cm respectively. Root mean square for three dimension (RMS3D) for GPS/GLONASS PPP solution is 8.96 cm. With the addition of Galileo and BeiDou to the combined GPS/GLONASS further enhances the positioning accuracy. Root mean square for horizontal component reach to 5.35 cm of GPS/GLONASS/Galileo/BeiDou PPP solutions. Results analysis of GPS/GLONASS/Galileo PPP solutions show an improvement of convergence time by only 3.81% to achieve accuracy level of 3.0 cm over GPS/GLONASS/BeiDou PPP mode. Results also demonstrate that position accuracy improvement after adding BeiDou observations to the GPS/GLONASS PPP mode is not significant.","PeriodicalId":43216,"journal":{"name":"Artificial Satellites-Journal of Planetary Geodesy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance Evaluation of Precise Point Positioning Using Dual Frequency Multi-GNSS Observations\",\"authors\":\"Jabir Shabbir Malik\",\"doi\":\"10.2478/arsa-2020-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In addition to GPS and GLONASS constellation, the number of (Global Navigation Satellite System) GNSS satellites are increasing, it is now possible to evaluate and analyze the position accuracy with multi GNSS constellation. In this paper, statistical assessment of static Precise Point Positioning (PPP) using GPS, GLONASS, dual system GPS/GLONASS, three system GPS/GLONASS/Galileo, GPS/GLONASS/BeiDou and multi system GPS/GLONASS/Galileo/BeiDou PPP combinations is evaluated. Observation data of seven whole days from seven IGS multi GNSS experiment (MGEX) stations is used for analysis. Position accuracy and convergence time is analyzed. Results show that the GPS/GLONASS positioning accuracy increases over GPS PPP. Standard deviations (STDs) of position errors for GPS PPP are 4.63, 3.00 and 6.96 cm in east, north and up components while STDs for GPS/GLONASS PPP are 4.10, 3.42 and 6.50 cm respectively. Root mean square for three dimension (RMS3D) for GPS/GLONASS PPP solution is 8.96 cm. With the addition of Galileo and BeiDou to the combined GPS/GLONASS further enhances the positioning accuracy. Root mean square for horizontal component reach to 5.35 cm of GPS/GLONASS/Galileo/BeiDou PPP solutions. Results analysis of GPS/GLONASS/Galileo PPP solutions show an improvement of convergence time by only 3.81% to achieve accuracy level of 3.0 cm over GPS/GLONASS/BeiDou PPP mode. Results also demonstrate that position accuracy improvement after adding BeiDou observations to the GPS/GLONASS PPP mode is not significant.\",\"PeriodicalId\":43216,\"journal\":{\"name\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/arsa-2020-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Satellites-Journal of Planetary Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/arsa-2020-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Performance Evaluation of Precise Point Positioning Using Dual Frequency Multi-GNSS Observations
Abstract In addition to GPS and GLONASS constellation, the number of (Global Navigation Satellite System) GNSS satellites are increasing, it is now possible to evaluate and analyze the position accuracy with multi GNSS constellation. In this paper, statistical assessment of static Precise Point Positioning (PPP) using GPS, GLONASS, dual system GPS/GLONASS, three system GPS/GLONASS/Galileo, GPS/GLONASS/BeiDou and multi system GPS/GLONASS/Galileo/BeiDou PPP combinations is evaluated. Observation data of seven whole days from seven IGS multi GNSS experiment (MGEX) stations is used for analysis. Position accuracy and convergence time is analyzed. Results show that the GPS/GLONASS positioning accuracy increases over GPS PPP. Standard deviations (STDs) of position errors for GPS PPP are 4.63, 3.00 and 6.96 cm in east, north and up components while STDs for GPS/GLONASS PPP are 4.10, 3.42 and 6.50 cm respectively. Root mean square for three dimension (RMS3D) for GPS/GLONASS PPP solution is 8.96 cm. With the addition of Galileo and BeiDou to the combined GPS/GLONASS further enhances the positioning accuracy. Root mean square for horizontal component reach to 5.35 cm of GPS/GLONASS/Galileo/BeiDou PPP solutions. Results analysis of GPS/GLONASS/Galileo PPP solutions show an improvement of convergence time by only 3.81% to achieve accuracy level of 3.0 cm over GPS/GLONASS/BeiDou PPP mode. Results also demonstrate that position accuracy improvement after adding BeiDou observations to the GPS/GLONASS PPP mode is not significant.